
Hyperscale Compliance Home
Hyperscale Compliance

Exported on 03/05/2024

Hyperscale Compliance – Hyperscale Compliance Home

– 2

Table of Contents

Welcome to the Hyperscale Compliance documentation! 4

Quick references ... 10

Release notes .. 11
New features .. 12

Fixed issues... 18

Known issues.. 25

Overview.. 49
Hyperscale Compliance deployment architecture .. 49

The Continuous Compliance platform.. 51

Next steps ... 51

Getting started .. 52
Hyperscale Compliance architecture.. 53

Data source support... 56

Supported platforms ... 66

Network requirements... 67

Deployment.. 68

NFS server installation... 136

Accessing the Hyperscale Compliance API ... 139

How to setup a Hyperscale Compliance job.. 141
Pre-checks .. 141

API Flow to Setup a Hyperscale Compliance Job... 141

Engines API ... 142

MountFileSystems API ... 142

ConnectorInfo API .. 143

StructuredDataFormat APIs .. 150

DataSets API ... 151

Jobs API .. 163

JobExecution API ... 167

How to Sync a Hyperscale Job ... 173
How to import a Job from Continuous Compliance Engine .. 173

How to re-import a Job from Continuous Compliance Engine ... 175

Hyperscale Compliance – Hyperscale Compliance Home

– 3

Script to automatically import/re-import a Job from Continuous Compliance Engine .. 175

How to sync global settings from a Delphix Continuous Compliance Engine .. 175

Limitations ... 176

How to cancel a Hyperscale job ... 177

Configuration settings .. 178
Commonly used properties ... 178

Other properties... 181

Hyperscale Compliance API.. 195
Accessing the Hyperscale Compliance API ... 195

View the API reference ... 195

Cleaning up execution data.. 196

Hyperscale profilers .. 197
Parquet profiler .. 198

Hyperscale Compliance – Hyperscale Compliance Home

Welcome to the Hyperscale Compliance documentation! – 4

•

•

Welcome to the Hyperscale Compliance documentation!
When databases contain billions of rows of data, it can take weeks to protect sensitive data and PII using manual
processes or bulk masking to anonymize the data. Hyperscale Compliance from Delphix provides incredibly fast
masking speeds for large datasets enabling continuous compliant data delivery for CI/CD and DevOps initiatives.

Hyperscale Compliance does this by distributing the masking workload for a single job across multiple virtual
Continuous Compliance Engines, reducing the time to mask large databases through increased scalability and
efficiency.

This information explains how to deploy Hyperscale Compliance, use its features, or tune its configurations for
optimal performance. The content has been organized into several categories, available from the lefthand
navigation.

List of Hyperscale Compliance documentation versions in PDF format.

16.0.0_HyperscaleComplia…

15.0.0_HyperscaleComplia…

Hyperscale Compliance – Hyperscale Compliance Home

Welcome to the Hyperscale Compliance documentation! – 5

•

•

•

14.0.0_HyperscaleComplia…

13.0.0_HyperscaleComplia…

12.0.0_HyperscaleComplia…

Hyperscale Compliance – Hyperscale Compliance Home

Welcome to the Hyperscale Compliance documentation! – 6

•

•

•

11.0.0_HyperscaleComplia…

10.0.0_HyperscaleComplia…

9.0.0_HyperscaleComplian…

Hyperscale Compliance – Hyperscale Compliance Home

Welcome to the Hyperscale Compliance documentation! – 7

•

•

•

8.0.0_HyperscaleComplian…

7.0.0_HyperscaleComplian…

6.0.0_HyperscaleComplian…

Hyperscale Compliance – Hyperscale Compliance Home

Welcome to the Hyperscale Compliance documentation! – 8

•

•

•

5.0.0_HyperscaleComplian…

4.1.0_HyperscaleComplian…

4.0.0_HyperscaleComplian…

Hyperscale Compliance – Hyperscale Compliance Home

Welcome to the Hyperscale Compliance documentation! – 9

•

•

3.0.0_HyperscaleComplian…

1.0.0_HyperscaleComplian…

Hyperscale Compliance – Hyperscale Compliance Home

Quick references– 10

•
•
•
•
•

Quick references
Overview
Architecture
Data source support
New features
Fixed issues

https://hyperscalemasking.delphix.com/docs/latest/overview
https://hyperscalemasking.delphix.com/docs/latest/hyperscale-compliance-architecture
https://hyperscalemasking.delphix.com/docs/latest/data-source-support
https://hyperscalemasking.delphix.com/docs/latest/new-features
https://hyperscalemasking.delphix.com/docs/latest/fixed-issues

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 11

Release notes
This section is used to learn what the newest version of Hyperscale Compliance has to offer. In addition, the fixed
and known issues per version are detailed.

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 12

•

•

•

•

•

•

New features

18.0.0 release
This release supports the following feature/features:

Support for mounted filesystems as source and target locations for Parquet connector
This release provides support for mounted filesystems for Parquet connectors. You can now provide
mounted filesystems as their source and target locations in addition to the already supported AWS S3
buckets if you wish to do so.
Support for sharded MongoDB Atlas database
This release provides support for Sharded MongoDB databases (Atlas and on-prem) for Mongo connectors.
The information within sharded collections from the source database can be masked and transferred into
the sharded target database by ensuring the utilization of identical shard keys.
Ability to provide a name for the connector
This release enhances the connector API to provide a name. For more information, refer https://
delphixdocs.atlassian.net/wiki/pages/createpage.action?
spaceKey=HC&title=%2818.0.0%29%20Hyperscale%20Compliance%20API&linkCreation=true&fromPageId=
105054481.

17.0.0 release
This release supports the following feature/features:

Addition of Apache Spark as data writer in Delimited Files connector
The Delimited files connector now comes with PySpark (Apache Spark) to split the large files with added
advantage. You can now select the backend data writer that works for your use case. To know more about
these choices, refer to Delimited Files Connector.

16.0.0 release
This release supports the following feature/features:

Introduction of the Parquet connector
This release introduces a Parquet connector that can be used to mask large Parquet files available on AWS
S3 buckets. The connector splits the large files into smaller chunks, passes them to the masking service, and
joins them back on the target location.

15.0.0 release
This release supports the following feature/features:

This release adds an option to configure whether you want to load empty values of Oracle BLOB/CLOB
column as Null or empty string. A new property load_empty_lobs_as_null has been added under
the 'target_config' job to configure the same. It can be configured at the job level. The default value of this
property is false (i.e., load as empty string).

14.0.0 release
This release supports the following feature/features:

https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=105054481&linkCreation=true&spaceKey=HC&title=%2818.0.0%29+Hyperscale+Compliance+API
https://delphixdocs.atlassian.net/wiki/spaces/HC/pages/86606445/%2817.0.0%29+Data+source+support

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 13

•

•

•

•

•

•

•

•

•

•

•

Oracle: Lookup references of a table recursively
In this release, we have improved the pre-load process. Now, the pre-load process has been enhanced to
perform recursive searches for table references until the final reference is found.
Support for masking structured data(XML/JSON) embedded in a database column
This release introduces the support for masking the field values in XML / JSON data stored as CLOB in a
database column. This has been achieved with the addition of a new entity called structured-data-

format to the Hyperscale.

13.0.0 release
This release supports the following feature/features:

Job Cancellation - Phase 5
This release provides an end-to-end Job Cancellation feature, offering you to cancel any Hyperscale Job
Execution. All the running processes of Unload, Masking, Load, and Post Load Task will be canceled.
Introduction of MongoDB Connector
This connector enhances data security by seamlessly masking extensive MongoDB collections. This ensures
the continued usability of data while providing robust protection for sensitive information. The connector
now offers enhanced export capabilities, allowing you to split collections based on their preferences. Data
masking is seamlessly applied through the dedicated masking service, and the masked data is seamlessly
imported into the designated target collection.
This release introduces a separate artifact known as the MongoDB Profiler that can be downloaded from the
same location as Hyperscale. It is an optional tool designed for profiling MongoDB collection data,
generating an inventory of sensitive columns, and submitting the payload to the dataset API. The Profiler
artifact includes a README file that provides detailed usage instructions. For information on the format of
the dataset API payload, refer to the DataSets API section in this document.
New execution endpoint
This release adds a new API GET endpoint (/executions/summary) to the existing JobExecution API to
get the summarised overview of all the Executions of a particular Hyperscale Job.

12.0.0 release
This release supports the following feature/features:

Job cancellation - Phase 4
This release adds the capability for users to cancel a Hyperscale Job Execution once the unload task of the
execution has been finished. This will result in the cancellation of all ongoing processes related to masking
and load tasks.
Introduction of Delimited Files Connector
This release introduces a delimited files connector that can be used to mask large delimited flat files (with a
delimiter of single character length) available on an NFS location. The connector splits the large into user-
provided chunks, passes it to the masking service, and joins back.
In this release, we're excluding pre-load and post-load processes for empty tables, leading to enhanced
performance in scenarios where datasets contain empty tables.

11.0.0 release
This release supports the following feature/features:

Job cancellation - Phase 3
With this release, you can cancel the MSSQL Hyperscale Job Execution while the load task of the execution is
running.
Improvements in the Hyperscale job sync feature

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 14

•

•

•

•

•

•

•

•

•

This release introduces a new API endpoint PUT /import/{datasetId} to update the existing
dataset and connector on the Hyperscale Compliance Orchestrator with refreshed ruleset from the
Continuous Compliance Engine.
This release provides a utility script to automate the process of creating/updating a dataset and
connector at Hyperscale, by exporting a masking job from the Continuous Compliance engine.

For more details, refer to How to Sync a Hyperscale Job documentation.

Oracle NLS Support for Japanese character set
This release adds Oracle NLS Support for the Japanese character set.

10.0.0 release
This release supports the following feature/features:

Job cancellation - Phase 2
With this release, you can cancel an Oracle Hyperscale Job Execution while the Load task of the execution is
running. This feature is not available for MSSQL connectors.

9.0.0 release
This release supports the following feature/features:

Job cancellation - Phase 1
With this release, you can cancel a Hyperscale Job Execution while the Post Load task of the execution is
running. For more details, refer to the How to Cancel a Hyperscale Job documentation.

8.0.0 release
This release supports the following feature/features:

Support for Kubernetes deployment
This release introduces the capability to deploy the Hyperscale Compliance Orchestrator on a single-node
Kubernetes cluster by using the helm charts. For more details, refer to the (8.0.0) Installation and setup
(Kubernetes) documentation.
Enhanced post-load task status
This release provides you with comprehensive visibility into the progress status of the post-load task (for
example, ongoing process for constraints, indexes, and triggers) using the execution API endpoints. For
more details, refer to the How to Setup a Hyperscale Compliance Job documentation.
Oracle connector - degree of parallelism for recreating indexes
This release provides you the ability to specify and configure the degree of parallelism(DOP) per Oracle job
to recreate the index in the post-load process. Currently, the recreate index DDL utilizes only the default
Degree of Parallelism set by the oracle but now you can specify the custom value that can enhance the
performance of the index recreation process. For more details, refer to the (8.0.0) Hyperscale Compliance
API documentation.
Introduction of semantic versioning (Major.Minor.Patch)
With this release, Hyperscale introduced support for Kubernetes deployment through helm charts. As helm
charts support 3 part Semantic Versioning, hence release 8.0.0 onwards Hyperscale will also follow the 3
part Semantic Versioning instead of 4 parts semantic versioning.

7.0.0.0 release
This release supports the following feature/features:

https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=105054481&linkCreation=true&spaceKey=HC&title=%2818.0.0%29+How+to+Sync+a+Hyperscale+Job
https://delphixdocs.atlassian.net/wiki/spaces/HC/pages/5309804/%289.0.0%29+How+to+cancel+a+Hyperscale+job
https://delphixdocs.atlassian.net/wiki/spaces/HC/pages/5342943
https://delphixdocs.atlassian.net/wiki/spaces/HC/pages/5408602/%288.0.0%29+Hyperscale+Compliance+API

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 15

•

•
•

•

•
•

•

•

•

•

•

Performance improvement
This release introduces impactful changes aimed at enhancing the performance of the masking task within
the Hyperscale Job, ultimately resulting in improved overall job performance. The following key changes
have been implemented:

Changes in Masking Service to increase the Compliance Engine utilization by Hyperscale.
Masking Service will no more process tables having 0 rows.

Oracle
This release supports tables with subpartition indexes during load.

6.0.0.0 release
This release supports the following feature/features:

New file based endpoints
file-download: This release introduces a new API endpoint to download the execution and dataset
responses. For more information, refer to the (6.0.0) Hyperscale Compliance API documentation.
file-upload: This release introduces a new API endpoint to upload a file that currently can be used to
create or update the dataset using POST /data-sets/file-upload and PUT /data-sets/file-upload/
{dataSetId} endpoints. For more information, refer to the (6.0.0) Hyperscale Compliance API
documentation.

MSSQL database scalability improvements
This release improves the overall job performance by adding the handling of primary key constraints.

5.0.0.1 releases
5.0.0.1 is a patch release specifically aimed at addressing a critical bug. For more information, see (5.0.0) Fixed
issues .

5.0.0.0 release
This release supports the following feature/features:

MS SQL connector
This release adds the MS SQL connector implemented as separate services that include unload and load
services. These connector services enable Hyperscale Compliance for MS SQL databases.
New execution endpoints
This release adds a new API GET endpoint (/executions/{id}/summary) to the existing JobExecution

API to get the overview of the progress of a Job Execution. In addition to this, the existing GET /

executions/{id} endpoint has been extended to have additional filters based on the task name and
the task's metadata object's status. For more information, refer to the Execution API in the (5.0.0) Hyperscale
Compliance API section.
Multi-column algorithm support
With this release, Multi-Column Algorithms can also be provided in the /data-sets endpoint. For more
information, refer to the Dataset API in the (5.0.0) Hyperscale Compliance API section. Additionally, existing
Continuous Compliance jobs containing multi-column algorithm-related fields can now be imported via/

import endpoint.

4.1.0 release
This release supports the following feature/features:

https://delphixdocs.atlassian.net/wiki/spaces/HC/pages/5343436/%286.0.0%29+Hyperscale+Compliance+API
https://delphixdocs.atlassian.net/wiki/spaces/HC/pages/5343436/%286.0.0%29+Hyperscale+Compliance+API
https://delphixdocs.atlassian.net/wiki/spaces/HC/pages/5310675/%285.0.0%29+Fixed+issues
https://delphixdocs.atlassian.net/wiki/spaces/HC/pages/5410053/%285.0.0%29+Hyperscale+Compliance+API
https://delphixdocs.atlassian.net/wiki/spaces/HC/pages/5410053/%285.0.0%29+Hyperscale+Compliance+API

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 16

•

•

•

•

•

•

•

•

•

•

•

Capability to limit the number of connections
This release adds the capability to limit the number of connections to the source and target databases using
the new API parameters as Max_concurrent_source_connection and Max_concurrent_target_connection
under new source_configs and target_configs respectively. Using this property, you can fine-tune the
number of connections as per source target infra to get better performance. For more information, refer to
the (4.1.0) Hyperscale Compliance API documentation.
Increased API object limit
This release increases the API object limit from 1000 to 10000.

4.0.0 release
This release supports the following feature/features:

Hyperscale job sync
This release adds the ability to:

Import masking jobs inventory from Continuous Compliance engines into connector and dataset info
of Hyperscale Compliance Orchestrator with the sync (4.0.0) Accessing the Hyperscale Compliance
API endpoint.
Import global settings that include Algorithms/Domains from Continuous Compliance Engines to
Hyperscale Clustered Continuous Compliance Engines using the sync (4.0.0) Accessing the
Hyperscale Compliance API endpoint.
For more information, refer to the (4.0.0) How to sync a Hyperscale job section.

Add configuration properties through .env file
This release adds an additional capability to override commonly used configuration properties through
the .env file. You can now update application properties in this file before starting the application. For more
information, refer to the (4.0.0) Configuration settings section.

3.0.0.1 release
3.0.0.1 is a patch release specifically aimed at addressing critical bugs. For more information, see (3.0.0) Fixed
issues .

3.0.0.0 release
This release supports the following feature/features:

Oracle connector
This release includes the Oracle connector implemented as separate services, including unload and load
services. These connector services enable Hyperscale Compliance for Oracle databases.
Parallel processing of tables
This release processes all tables provided through the data-set API in parallel through the four operational
stages - unload, masking, upload, and post-load to minimize the total time it takes to mask the complete
data set.
Monitoring
This release provides monitoring APIs so that you can track the progress of tables in your data set through
the unload, masking, upload, and post-load phases. This API also provides a count of rows being processed
through different stages.
Restartability
This release includes the ability to restart a failed process.
Clean up
This release supports cleaning data from previous job execution.

https://delphixdocs.atlassian.net/wiki/spaces/HC/pages/5245694/%284.1.0%29+Hyperscale+Compliance+API
https://delphixdocs.atlassian.net/wiki/spaces/HC/pages/5410780/%284.0.0%29+Accessing+the+Hyperscale+Compliance+API
https://delphixdocs.atlassian.net/wiki/spaces/HC/pages/5410780/%284.0.0%29+Accessing+the+Hyperscale+Compliance+API
https://delphixdocs.atlassian.net/wiki/spaces/HC/pages/5311479/%284.0.0%29+How+to+sync+a+Hyperscale+job
https://delphixdocs.atlassian.net/wiki/spaces/HC/pages/5311507/%284.0.0%29+Configuration+settings
https://delphixdocs.atlassian.net/wiki/spaces/HC/pages/5410967/%283.0.0%29+Fixed+issues

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 17

•
•

2.0.0.1 release
2.0.0.1 is a patch release specifically aimed at addressing critical bugs and has the following updates:

Upgraded spring boot version to 2.5.12.
Minor view-only changes in swagger-based API client.

2.0.0 release
2.0.0 is the initial release of Hyperscale Compliance. Hyperscale Compliance is an API-based interface that is
designed to enhance the performance of masking large datasets. It allows you to achieve faster masking results
using the existing Delphix Continuous Compliance offering without adding the complexity of configuring multiple
jobs.

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 18

Fixed issues
This section describes the issues fixed in Hyperscale Compliance.

Release 18.0.0

Key Summary

HM-3100 Index creation on Local Partition table fails with ORA-14024

HSC-454 With pySpark we are removing the leading space for numbers

Release 17.0.0

Key Summary

HM-1705 Improper error message in Hyperscale status response if CCE gets mount file system connection
error

HM-2962 Incorrect gathering target table group list in case of the table refered from other tables.

HSC-176 Delimited connector: values with data type double and int64 will always be converted into a
string

HSC-177 Delimited connector: Irrespective of user provided enclosure character, the output strings will be
quoted using double quotes

HSC-279 Wrong counts in Unload: Using HS 14 delimited file connector, while masking two files in the
dataset, job shows failed status, because the counts are all wrong

HSC-286 Load failed because the SQLite3 database locked up. Masking 15 files with the same data set.
Unload has the wrong count.

HSC-361 Hyperscale delimited connector should not add double quotes to output file

Release 16.0.0

Key Summary

HM-2748 Unable to upload sync bundle of more than 20 MB

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 19

Release 15.0.0

Key Summary

HM-2505 ServiceUnavailableException in Masking Service as numeric value out of range

HM-2554 Missing security context causes controller to fail with permission denied for JDBC connection to
SQLite DB

HM-2609 Configuration added to load empty values of oracle CLOB/BLOB columns as null or empty string

Release 14.0.0

Key Summary

HSC-182 400 Bad Request from POST http://unload-service:8080/api/unload

HM-2413 NTRS: Pre Load failed with errors: Error executing statement: Error disabling constraint

HM-2505 ServiceUnavailableException in Masking Service as numeric value out of range

HM-2554 Missing security context causes controller to fail with permission denied for JDBC connection to
SQLite DB

HM-2568 Hyperscale API's working without auth key in k8s setup

Release 13.0.0

Key Summary

HSC-178 Delimited load service will show the status as FAILED while it is waiting for all split files to be
masked in order to perform join.

HSC-179 While executing masking against a 1.1 TB second time, the load job failed mid-execution.

HM-2399 MSSQL: The lower bound of partitioning column is larger than the upper bound.

HM-2443 Masking service is mapping the wrong file metadata when multiple data_info objects with varying
delimiters are passed during data-sets creation.

http://unload-service:8080/api/unload

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 20

Release 12.0.0

Key Summary

HM-2268 Add support to configure FileMetadata related characters for structured (i.e. XML) data

HM-2344 sync-compliance-engine endpoint failing with "Invalid input" error

HM-2399 MSSQL: The lower bound of partitioning column is larger than the upper bound.

Release 11.0.0
There are no fixed issues in this release.

Release 10.0.0

Key Summary

HM-1360 Job is created with default value of 'retain_execution_data' parameter if an invalid value for the
same parameter is passed while creating the job object

HM-2041 Capture high-level processing timings for each process for each object

HM-2084 cancel script (cancel.sh) does not read values from .env file

HM-2199 Masking service paginated GET call, skip the result of last page

Release 9.0.0

Key Summary

HM-1845 java.sql.SQLException: Protocol violation While fetching metadata of the table

HM-1980 Post load status incorrectly reporting consolidated start and end timing.

HM-2017 The masking process is stuck in running when a newly registered engine is used in execution after
the timeout time of the Engine

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 21

Release 8.0.0

Key Summary

HM-1
606

When tables have more than 100 columns on Oracle, the default API page at 100 causes an issue where
we don't match the column name via the masking API

HM-1
787

Oracle: Load service holds a lock on class level, causing parallel jobs stuck in the flow of preload

HM-1
814

MSSQL: Load service holds the lock on class level, causing parallel jobs stuck in the flow of preload

Release 7.0.0.0

Key Summary

HM-1
617

Oracle - Hyperscale engine fails to mark partitions of the partitioned index as unusable in pre-load and
fails to rebuild a partitioned index in post load leaving indexes in an unusable state

HM-1
684

Running multiple Hyperscale jobs in parallel, using the same set of Masking Engines and the same
value of env_name_prefix and app_name_prefix can cause job failure with the missing ruleset, any
other masking objects, or execution error.

Release 6.0.0.0

Key Summary

HM-1
513

MSSQL - Slowness while performing load with large tables(more than 4M rows and 10 Columns)

HM-1
521

MSSQL - Post load fails with 'transaction log is full due to 'ACTIVE_TRANSACTION' for large tables

HM-1
608

SQLLDR doesn't load the data when the table has enabled triggers owned by a different user

HM-1
645

Failed clean up of previous execution causes "\"File Format already exists with identifier:
HYPERSCALE_16_9fd11fae45861fdb18fb658fb950ceab.fmt\" issue for next execution of same job

HM-1
656

nginx configuration client max body size limits the size of the payload to post for the dataset

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 22

Release 5.0.0.1

Key Summary

HM-1
561

Oracle Load Failure: SQL loader control files doesn't contain character length when column size is less
than 256 CHAR

Release 5.0.0.0

Key Summary

HM-9
71

For HTTP protocol-type requests, trust store fields are accepted and displayed in response.

HM-1
472

Oracle Unload service doesn't release the lock if fails to initialize the connection pool and the job stuck
in a runnning state

HM-1
520

Masking service: Starting execution throwing NPE after container restart

HM-1
522

Update Oracle JDBC Driver to 21.3.0.0

Release 4.1.0

Key Summary

HM-1
155

Diagnosability: How do I tell which masking job on the masking engine relates to the failed message on
the HS Jobs API status

HM-1
168

The error text in Post Load failures is misleading/unclear

HM-1
191

Optimization: We should execute Select Count (*) in parallel to the Oracle Unload process. It could take
a significant amount of time to count data in large tables as well as 1000 objects.

HM-1
201

Unable to import a ruleset with 5000 tables to HS 4.0, getting an error message.

HM-1
210

While trying to process an HS job for 5000 table schema, ran out of Oracle cursor, and then the SQLite
database locked up.

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 23

Key Summary

HM-1
265

Oracle - Any index on a column having no constraint on it, is not getting dropped

HM-1
334

Can't drop the index, because the index is not owned by the user we used to connect.

HM-1
378

Oracle - Load service needs to include index owner name when attempting to modify/rebuild partition
indexes owned by different db user

Release 4.0.0

Key Summary

HM-1
77

Able to POST /hyperscale-masking/jobs with min job memory > max job memory

HM-5
30

POST/PUT request dataSet API error response received with empty/missing/invalid ‘source’/’target’
object/values can be improved

HM-7
54

POST/PUT connector jdbc_url, username, and password should be mandatory for Oracle load and
unload service

HM-7
89

Error message upon not setting the ‘SSL’ field to False indicates ‘insecure_ssl’ property which no longer
exists in the schema

HM-8
58

Status of sub-task coming wrong when overall execution failed

HM-9
32

Suppress the password message for the controller log

HM-1
138

The description in the swagger doesn’t match the API call

HM-1
140

The error needs more information to diagnose a connector issue.

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 24

Release 3.0.0.1

Key Summary

HM-8
58

Status of sub-task coming wrong when overall execution failed

HM-8
73

Intermittently there is a mismatch in loaded_rows displayed in the load task vs the actual rows loaded
in the target table

HM-9
15

Load: driver support plugin throws ORA-02297: cannot disable constraint - dependencies exist error for
foreign key

Release 3.0.0

Key Summary

HM-2
94

The updated file format is not POST’ed on the Continuous Compliance Engine if the file format name is
the same

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 25

Known issues
This section describes the known issues in Hyperscale Compliance.

Release 18.0.0

Key Summary Workaround

HM-663 Oracle: The load process is failing with "Error disabling constraint" for
identity columns

None

HM-812 Application on the registered masking engine is not deleted with the
cleanup

None

HM-1196 MSSQL - The job is stuck in a running state while using a filter key having
NULL values.

None

HM-1239 MSSQL- Unload fails for a schema or table name having a ']' character in
it

None

HM-1240 MSSQL - Unload fails for a column having '.' in its name None

HM-1246 MSSQL - Unload fails with UnknownFormatConversionException for a
table having % in its name

None

HM-1382 Oracle : Dataset having any one entry with invalid schema leaves
indexes of other tables as UNUSABLE

Manually enable the
unusable indexes

HM-1397 Oracle Load fails for table having triggers only with SQL*Loader-937
error

None

HM-1463 MSSQL - Load Service fails when Table name contains ' None

HM-1523 MSSQL - Job fails while loading masked VARBINARY data None

HM-1929 Postload task status shows the old error message for the error field after
restart the execution.

None

HM-2185 Post Load constraints/indexes/triggers queries keeps on running at
target DB even after cancellation is completed at Hyperscale end.

Refresh the target
database before
restarting/rerunning
the Job.

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 26

Key Summary Workaround

HM-2485 Cancel job will terminate more promptly in comparison with the earlier
release. In certain situations, like unloading a very large number of
MSSQL tables, there might not be a noticeable improvement.

None

HM-2593 MSSQL - In PreLoad table references not fetched till last level in
relationship hierarchy

None

HM-2663 Cleanup docker-compose-sample.yaml file in the docker-compose tar
bundle

None

Release 17.0.0

Key Summary Workaround

HM-663 Oracle: The load process is failing with "Error disabling constraint" for
identity columns

None

HM-812 Application on the registered masking engine is not deleted with the
cleanup

None

HM-1196 MSSQL - The job is stuck in a running state while using a filter key having
NULL values.

None

HM-1239 MSSQL- Unload fails for a schema or table name having a ']' character in
it

None

HM-1240 MSSQL - Unload fails for a column having '.' in its name None

HM-1246 MSSQL - Unload fails with UnknownFormatConversionException for a
table having % in its name

None

HM-1382 Oracle : Dataset having any one entry with invalid schema leaves
indexes of other tables as UNUSABLE

Manually enable the
unusable indexes

HM-1397 Oracle Load fails for table having triggers only with SQL*Loader-937
error

None

HM-1463 MSSQL - Load Service fails when Table name contains ' None

HM-1523 MSSQL - Job fails while loading masked VARBINARY data None

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 27

Key Summary Workaround

HM-1705 Improper error message in Hyperscale status response if CCE gets
mount file system connection error

None

HM-1929 Postload task status shows the old error message for the error field after
restart the execution.

None

HM-2185 Post Load constraints/indexes/triggers queries keeps on running at
target DB even after cancellation is completed at Hyperscale end.

Refresh the target
database before
restarting/rerunning
the Job.

HM-2485 Cancel job will terminate more promptly in comparison with the earlier
release. In certain situations, like unloading a very large number of
MSSQL tables, there might not be a noticeable improvement.

None

HM-2593 MSSQL - In PreLoad table references not fetched till last level in
relationship hierarchy

None

HM-2663 Cleanup docker-compose-sample.yaml file in the docker-compose tar
bundle

None

Release 16.0.0

Key Summary Workaround

HM-663 Oracle: The load process is failing with "Error disabling constraint" for
identity columns

None

HM-812 Application on the registered masking engine is not deleted with the
cleanup

None

HM-1196 MSSQL - The job is stuck in a running state while using a filter key having
NULL values.

None

HM-1239 MSSQL- Unload fails for a schema or table name having a ']' character in
it

None

HM-1240 MSSQL - Unload fails for a column having '.' in its name None

HM-1246 MSSQL - Unload fails with UnknownFormatConversionException for a
table having % in its name

None

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 28

Key Summary Workaround

HM-1382 Oracle : Dataset having any one entry with invalid schema leaves
indexes of other tables as UNUSABLE

Manually enable the
unusable indexes

HM-1397 Oracle Load fails for table having triggers only with SQL*Loader-937
error

None

HM-1463 MSSQL - Load Service fails when Table name contains ' None

HM-1523 MSSQL - Job fails while loading masked VARBINARY data None

HM-1705 Improper error message in Hyperscale status response if CCE gets
mount file system connection error

None

HM-1929 Postload task status shows the old error message for the error field after
restart the execution.

None

HM-2185 Post Load constraints/indexes/triggers queries keeps on running at
target DB even after cancellation is completed at Hyperscale end.

Refresh the target
database before
restarting/rerunning
the Job.

HM-2485 Cancel job will terminate more promptly in comparison with the earlier
release. In certain situations, like unloading a very large number of
MSSQL tables, there might not be a noticeable improvement.

None

HM-2593 MSSQL - In PreLoad table references not fetched till last level in
relationship hierarchy

None

HM-2663 Cleanup docker-compose-sample.yaml file in the docker-compose tar
bundle

None

Release 15.0.0

Key Summary Workaround

HM-663 Oracle: The load process is failing with "Error disabling constraint" for
identity columns

None

HM-812 Application on the registered masking engine is not deleted with the
cleanup

None

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 29

Key Summary Workaround

HM-1196 MSSQL - The job is stuck in a running state while using a filter key having
NULL values.

None

HM-1239 MSSQL- Unload fails for a schema or table name having a ']' character in
it

None

HM-1240 MSSQL - Unload fails for a column having '.' in its name None

HM-1246 MSSQL - Unload fails with UnknownFormatConversionException for a
table having % in its name

None

HM-1382 Oracle : Dataset having any one entry with invalid schema leaves
indexes of other tables as UNUSABLE

Manually enable the
unusable indexes

HM-1397 Oracle Load fails for table having triggers only with SQL*Loader-937
error

None

HM-1463 MSSQL - Load Service fails when Table name contains ' None

HM-1523 MSSQL - Job fails while loading masked VARBINARY data None

HM-1705 Improper error message in Hyperscale status response if CCE gets
mount file system connection error

None

HM-1929 Postload task status shows the old error message for the error field after
restart the execution.

None

HM-2185 Post Load constraints/indexes/triggers queries keeps on running at
target DB even after cancellation is completed at Hyperscale end.

Refresh the target
database before
restarting/rerunning
the Job.

HM-2485 Cancel job will terminate more promptly in comparison with the earlier
release. In certain situations, like unloading a very large number of
MSSQL tables, there might not be a noticeable improvement.

None

HM-2593 MSSQL - In PreLoad table references not fetched till last level in
relationship hierarchy

None

HM-2663 Cleanup docker-compose-sample.yaml file in the docker-compose tar
bundle

None

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 30

Release 14.0.0

Key Summary Workaround

HM-663 Oracle: The load process is failing with "Error disabling constraint" for
identity columns

None

HM-812 Application on the registered masking engine is not deleted with the
cleanup

None

HM-1196 MSSQL - The job is stuck in a running state while using a filter key having
NULL values.

None

HM-1239 MSSQL- Unload fails for a schema or table name having a ']' character in
it

None

HM-1240 MSSQL - Unload fails for a column having '.' in its name None

HM-1246 MSSQL - Unload fails with UnknownFormatConversionException for a
table having % in its name

None

HM-1382 Oracle : Dataset having any one entry with invalid schema leaves
indexes of other tables as UNUSABLE

Manually enable the
unusable indexes

HM-1397 Oracle Load fails for table having triggers only with SQL*Loader-937
error

None

HM-1463 MSSQL - Load Service fails when Table name contains ' None

HM-1523 MSSQL - Job fails while loading masked VARBINARY data None

HM-1705 Improper error message in Hyperscale status response if CCE gets
mount file system connection error

None

HM-1929 Postload task status shows the old error message for the error field after
restart the execution.

None

HM-2413 In PreLoad table references not fetched till last level in relationship
hierarchy

None

HM-2485 Cancel job will terminate more promptly in comparison with the earlier
release. In certain situations, like unloading a very large number of
MSSQL tables, there might not be a noticeable improvement.

None

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 31

Key Summary Workaround

HM-2663 Cleanup docker-compose-sample.yaml file in the docker-compose tar
bundle

None

Release 13.0.0
Delimited Files Connector

Key Summary Workaround

HSC-
174

Delimited unload service does not
show incremental unload row count,
it always should unloaded count is the
same as the total count

None

HSC-
176

Delimited connector: values with data
type double and int64 will always be
converted into a string

None

HSC-
177

Delimited connector: Irrespective of
user provided enclosure character,
the output strings will be quoted
using double quotes

None

Key Summary Workaround

HM-663 Oracle: The load process is failing with "Error disabling constraint" for
identity columns

None

HM-812 Application on the registered masking engine is not deleted with the
cleanup

None

HM-1196 MSSQL - The job is stuck in a running state while using a filter key having
NULL values.

None

HM-1239 MSSQL- Unload fails for a schema or table name having a ']' character in
it

None

HM-1240 MSSQL - Unload fails for a column having '.' in its name None

HM-1246 MSSQL - Unload fails with UnknownFormatConversionException for a
table having % in its name

None

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 32

Key Summary Workaround

HM-1382 Oracle : Dataset having any one entry with invalid schema leaves
indexes of other tables as UNUSABLE

Manually enable the
unusable indexes

HM-1397 Oracle Load fails for table having triggers only with SQL*Loader-937
error

None

HM-1463 MSSQL - Load Service fails when Table name contains ' None

HM-1523 MSSQL - Job fails while loading masked VARBINARY data None

HM-1705 Improper error message in Hyperscale status response if CCE gets
mount file system connection error

None

HM-1929 Postload task status shows the old error message for the error field after
restart the execution.

None

HM-2185 Post Load constraints/indexes/triggers queries keeps on running at
target DB even after cancellation is completed at Hyperscale end.

Refresh the target
database before
restarting/rerunning
the Job.

HM-2413 In PreLoad table references not fetched till last level in relationship
hierarchy

None

HM-2485 Cancel job will terminate more promptly in comparison with the earlier
release. In certain situations, like unloading a very large number of
MSSQL tables, there might not be a noticeable improvement.

None

Release 12.0.0
Delimited Files Connector

Key Summary Workaround

HSC-
174

Delimited unload service does not
show incremental unload row count,
it always should unloaded count is the
same as the total count

None

HSC-
176

Delimited connector: values with data
type double and int64 will always be
converted into a string

None

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 33

Key Summary Workaround

HSC-
177

Delimited connector: Irrespective of
user provided enclosure character,
the output strings will be quoted
using double quotes

None

HSC-
178

Delimited load service will show the
status as FAILED while it is waiting for
all split files to be masked in order to
perform join

None

HM-2
443

Masking service is mapping the wrong
file metadata when multiple
data_info objects with varying
delimiters are passed during data-sets
creation.

Create individual data-sets for files with different delimiter
character.

Key Summary Workaround

HM-663 Oracle: The load process is failing with "Error disabling constraint" for
identity columns

None

HM-812 Application on the registered masking engine is not deleted with the
cleanup

None

HM-1196 MSSQL - The job is stuck in a running state while using a filter key having
NULL values.

None

HM-1239 MSSQL- Unload fails for a schema or table name having a ']' character in
it

None

HM-1240 MSSQL - Unload fails for a column having '.' in its name None

HM-1246 MSSQL - Unload fails with UnknownFormatConversionException for a
table having % in its name

None

HM-1382 Oracle : Dataset having any one entry with invalid schema leaves
indexes of other tables as UNUSABLE

Manually enable the
unusable indexes

HM-1397 Oracle Load fails for table having triggers only with SQL*Loader-937
error

None

HM-1463 MSSQL - Load Service fails when Table name contains ' None

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 34

Key Summary Workaround

HM-1523 MSSQL - Job fails while loading masked VARBINARY data None

HM-1705 Improper error message in Hyperscale status response if CCE gets
mount file system connection error

None

HM-1929 Postload task status shows the old error message for the error field after
restart the execution.

None

HM-2185 Post Load constraints/indexes/triggers queries keeps on running at
target DB even after cancellation is completed at Hyperscale end.

Refresh the target
database before
restarting/rerunning
the Job.

Release 11.0.0

Key Summary Workaround

HM-663 Oracle: The load process is failing with "Error disabling constraint" for
identity columns

None

HM-812 Application on the registered masking engine is not deleted with the
cleanup

None

HM-1196 MSSQL - The job is stuck in a running state while using a filter key having
NULL values.

None

HM-1239 MSSQL- Unload fails for a schema or table name having a ']' character in
it

None

HM-1240 MSSQL - Unload fails for a column having '.' in its name None

HM-1246 MSSQL - Unload fails with UnknownFormatConversionException for a
table having % in its name

None

HM-1382 Oracle : Dataset having any one entry with invalid schema leaves
indexes of other tables as UNUSABLE

Manually enable the
unusable indexes

HM-1397 Oracle Load fails for table having triggers only with SQL*Loader-937
error

None

HM-1463 MSSQL - Load Service fails when Table name contains ' None

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 35

Key Summary Workaround

HM-1523 MSSQL - Job fails while loading masked VARBINARY data None

HM-1705 Improper error message in Hyperscale status response if CCE gets
mount file system connection error

None

HM-1929 Postload task status shows the old error message for the error field after
restart the execution.

None

HM-2185 Post Load constraints/indexes/triggers queries keeps on running at
target DB even after cancellation is completed at Hyperscale end.

Refresh the target
database before
restarting/rerunning
the Job.

Release 10.0.0

Key Summary Workaround

HM-663 Oracle: The load process is failing with "Error disabling constraint" for
identity columns

None

HM-812 Application on the registered masking engine is not deleted with the
cleanup

None

HM-1196 MSSQL - The job is stuck in a running state while using a filter key having
NULL values.

None

HM-1239 MSSQL- Unload fails for a schema or table name having a ']' character in
it

None

HM-1240 MSSQL - Unload fails for a column having '.' in its name None

HM-1382 Oracle : Dataset having any one entry with invalid schema leaves
indexes of other tables as UNUSABLE

Manually enable the
unusable indexes

HM-1397 Oracle Load fails for table having triggers only with SQL*Loader-937
error

None

HM-1463 MSSQL - Load Service fails when Table name contains ' None

HM-1523 MSSQL - Job fails while loading masked VARBINARY data None

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 36

Key Summary Workaround

HM-1705 Improper error message in Hyperscale status response if CCE gets
mount file system connection error

None

HM-1929 Postload task status shows the old error message for the error field after
restart the execution.

None

HM-2185 Post Load constraints/indexes/triggers queries keeps on running at
target DB even after cancellation is completed at Hyperscale end.

Refresh the target
database before
restarting/rerunning
the Job.

Release 9.0.0

Key Summary Workaround

HM-663 Oracle: The load process is failing with "Error disabling constraint" for
identity columns

None

HM-812 Application on the registered masking engine is not deleted with the
cleanup

None

HM-1196 MSSQL - The job is stuck in a running state while using a filter key having
NULL values.

Use a filter key
which does not
have any Null
values

HM-1239 MSSQL- Unload fails for a schema or table name having a ']' character in it None

HM-1240 MSSQL - Unload fails for a column having '.' in its name None

HM-1246 MSSQL - Unload fails with UnknownFormatConversionException for a table
having % in its name

None

HM-1382 Oracle: Dataset having any one entry with invalid schema leaves indexes of
other tables as UNUSABLE

None

HM-1397 Oracle Load fails for tables having triggers only with SQL*Loader-937 error None

HM-1463 MSSQL - Load Service fails when the Table name contains ' None

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 37

Key Summary Workaround

HM-1523 MSSQL - Job fails while loading masked VARBINARY data None

HM-1705 Improper error message in Hyperscale status response if CCE gets mount
file system connection error

None

HM-1929 Postload task status shows the old error message for the error field after
restarting the execution.

None

Release 8.0.0

Key Summary Workaround

HM-663 Oracle: The load process is failing with "Error disabling
constraint" for identity columns

None

HM-812 Application on the registered masking engine is not deleted with
the cleanup

None

HM-1196 MSSQL - The job is stuck in a running state while using a filter key
having NULL values.

Use a filter key which does
not have any Null values

HM-1239 MSSQL- Unload fails for a schema or table name having a ']'
character in it

None

HM-1240 MSSQL - Unload fails for a column having '.' in its name None

HM-1246 MSSQL - Unload fails with UnknownFormatConversionException
for a table having % in its name

None

HM-1382 Oracle: Dataset having any one entry with invalid schema leaves
indexes of other tables as UNUSABLE

None

HM-1397 Oracle Load fails for tables having triggers only with
SQL*Loader-937 error

None

HM-1463 MSSQL - Load Service fails when the Table name contains ' None

HM-1523 MSSQL - Job fails while loading masked VARBINARY data None

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 38

Key Summary Workaround

HM-1705 Improper error message in Hyperscale status response if CCE gets
mount file system connection error

None

HM-1929 Postload task status shows the old error message for the error
field after restarting the execution.

None

Release 7.0.0.0

Key Summary Workaround

HM-663 Oracle: The load process is failing with "Error disabling constraint"
for identity columns

None

HM-812 Application on the registered masking engine is not deleted with
the cleanup

None

HM-1196 MSSQL - The job is stuck in a running state while using a filter key
having NULL values.

Use a filter key which does
not have any Null values

HM-1239 MSSQL- Unload fails for a schema or table name having a ']'
character in it

None

HM-1240 MSSQL - Unload fails for a column having '.' in its name None

HM-1246 MSSQL - Unload fails with UnknownFormatConversionException
for a table having % in its name

None

HM-1382 Oracle: Dataset having any one entry with invalid schema leaves
indexes of other tables as UNUSABLE

None

HM-1397 Oracle Load fails for tables having triggers only with
SQL*Loader-937 error

None

HM-1463 MSSQL - Load Service fails when the Table name contains ' None

HM-1523 MSSQL - Job fails while loading masked VARBINARY data None

HM-1705 Improper error message in Hyperscale status response if CCE gets
mount file system connection error

None

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 39

Release 6.0.0.0

Key Summary Workaround

HM-663 Oracle: The load process is failing with "Error disabling
constraint" for identity columns

None

HM-812 Application on the registered masking engine is not deleted
with the cleanup

None

HM-1196 MSSQL Job is stuck in a running state while using a filter key
having NULL values.

Use a filter key which does
not have any Null values

HM-1239 MSSQL- Unload fails for a schema or table name having a ']'
character in it

None

HM-1240 MSSQL - Unload fails for a column having '.' in its name None

HM-1246 MSSQL - Unload fails with
UnknownFormatConversionException for a table having % in its
name

None

HM-1382 Oracle: Dataset having any one entry with invalid schema leaves
indexes of other tables as UNUSABLE

None

HM-1397 Oracle: Dataset having any one entry with invalid schema leaves
indexes of other tables as UNUSABLE

None

HM-1463 MSSQL - Load Service fails when the Table name contains ' None

HM-1523 MSSQL - Job fails while loading masked VARBINARY data None

HM-1705 Improper error message in Hyperscale status response if CCE
gets mount file system connection error

None

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 40

Release 5.0.0.0

Key Summary Workaround

HM-291 Hyperscale job execution with an intelligent load
balancer configured is stuck in a loop if the job's max
memory is more than totalAllocatedMemoryForJobs

Change the max memory to a value
under the value of
totalAllocatedMemoryForJo

bs the property configured on the
Continuous Compliance Engine.

HM-652 Job execution is stuck in a running state if the mount
server is powered off

Check the health of the mount server
before starting a job.

HM-663 Oracle: Load process is failing with "Error disabling
constraint" for identity columns

None

HM-718 Not all data on the mount server is cleaned up if the
continuous compliance engine is stopped Cleanup up the data manually from

the mount server.

HM-745 The table name is not present in the error message while
enabling/disabling triggers, indexes, constraints

Check the logs in container logs to
get table details

HM-812 Application on the registered masking engine is not
deleted with the cleanup

None

HM-817 Intermittently job fails with ORA-02270: no matching
unique or primary key for this column-list

Restart the job using PUT /

executions/{id}/restart
and it will succeed.

HM-821 Hyperscale job does not handle post-load task properly
during restart if failed in pre-load (disabling trigger/
indexes/constraints) steps

After job execution is completed
successfully, check and manually
enable the disabled constraints.

HM-1196 MSSQL Job is stuck in a running state while using a filter
key having NULL values.

Use a filter key which does not have
any Null values

HM-1239 MSSQL- Unload fails for a schema or table name having a
']' character in it

None

HM0-1240 MSSQL - Unload fails for a column having '.' in its name None

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 41

Key Summary Workaround

HM-1246 MSSQL - Unload fails with
UnknownFormatConversionException for a table having
% in its name

None

HM-1251 MSSQL: Row is not loaded if masked BIT type column has
values other than true(1),false(0) or NULL

None

HM-1366 NPE displayed in hyperscale masking service logs just
after masking task is done

None

Hm-1382 Oracle : Dataset having any one entry with invalid
schema leaves indexes of other tables as UNUSABLE

None

HM-1397 Oracle Load fails for table having triggers only with
SQL*Loader-937 error

None

HM-1463 MSSQL - Load Service fails when Table name contains ' None

HM-1512 received_objects in Load step are more than
succeeded_objects in Masking step intermittently

None

HM-1513 MSSQL - Slowness while performing load with large
tables(more that 4M rows and 10 Columns)

None

HM-1521 MSSQL - Post load fails with 'transaction log is full due to
'ACTIVE_TRANSACTION' for large tables

None

HM-1523 MSSQL - Job fails while loading masked VARBINARY data None

HM-1528 Initial delay in updating response of unload/masking/
load execution objects with large number of tables

None

HM-1561 Oracle Load Failure: sql loader control files doesn't
contain character length when column size is less than
256 CHAR

None

HM-1705 Improper error message in Hyperscale status response if
CCE gets mount file system connection error

None

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 42

Release 4.1.0

Key Summary Workaround

HM-291 Hyperscale job execution with intelligent load balancer
configured is stuck in a loop if job’s max memory is more
than totalAllocatedMemoryForJobs

Change the max memory to a value
under the value of
totalAllocatedMemoryForJo

bs property configured on
Continuous Compliance Engine.

HM-652 Job execution is stuck in running state if mount server is
powered off

Check the health of mount server
before starting a job.

HM-663 Load process is failing with “Error disabling constraint”
for identity columns

None

HM-718 Not all data on mount server is cleaned up if masking
engine is stopped

Cleanup up the data manually from
the mount server.

HM-745 Table name is not present in error message while
enabling/disabling triggers,indexes,constraints

Check the logs in container logs to
get table details

HM-812 Application on registered masking engine is not deleted
with cleanup

None

HM-817 Intermittently job fails with ORA-02270: no matching
unique or primary key for this column-list

Restart the job using PUT /

executions/{id}/restart
and it will succeed.

HM-821 Hyperscale job does not handle post load task properly
during restart if failed in pre-load (disabling trigger/
indexes/constraints) steps

After job execution is completed
successfully, check and manually
enable the disabled constraints.

HM-1155 Diagnosibility: How do I tell which masking job on the
masking engine relates to the failed message on the HS
Jobs API status

Check the error details in masking
service logs

HM-1168 The error text is inaccurate, and doesn’t contain enough
information to diagnose it without accessing logs on the
Hyperscale server.

Check the error details in the logs

HM-1561 Oracle Load Failure: sql loader control files doesn't
contain character length when column size is less than
256 CHAR

None

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 43

Key Summary Workaround

HM-1705 Improper error message in Hyperscale status response if
CCE gets mount file system connection error

None

Release 4.0.0

Key Summary Workaround

HM-291 Hyperscale job execution with intelligent load balancer
configured is stuck in a loop if job’s max memory is
more than totalAllocatedMemoryForJobs

Change the max memory to a value
under the value of
totalAllocatedMemoryForJo

bs property configured on
Continuous Compliance Engine.

HM-652 Job execution is stuck in running state if mount server
is powered off

Check the health of mount server
before starting a job.

HM-663 Load process is failing with “Error disabling constraint”
for identity columns

None

HM-718 Not all data on mount server is cleaned up if masking
engine is stopped

Cleanup up the data manually from
the mount server.

HM-745 Table name is not present in error message while
enabling/disabling triggers,indexes,constraints

Check the logs in container logs to
get table details

HM-812 Application on registered masking engine is not
deleted with cleanup

None

HM-817 Intermittently job fails with ORA-02270: no matching
unique or primary key for this column-list

Restart the job using PUT /

executions/{id}/restart
and it will succeed.

HM-821 Hyperscale job does not handle post load task properly
during restart if failed in pre-load (disabling trigger/
indexes/constraints) steps

After job execution is completed
successfully, check and manually
enable the disabled constraints.

HM-1366 NPE displayed in hyperscale masking service logs just
before cleanup is performed

None

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 44

Key Summary Workaround

HM-1382 Dataset having any one entry with invalid schema
leaves indexes of other tables as UNUSABLE

None

HM-1397 Load fails for table having triggers only with
SQL*Loader-937 error

None

HM-1561 Oracle Load Failure: sql loader control files doesn't
contain character length when column size is less than
256 CHAR

None

HM-1705 Improper error message in Hyperscale status response
if CCE gets mount file system connection error

None

Release 3.0.0.1

Key Summary Workaround

HM-177 Able to POST /hyperscale-masking/jobs with min job
memory > max job memory

Change the max job memory value to
higher than min job memory in API
request.

HM-291 Hyperscale job execution with intelligent load
balancer configured is stuck in a loop if job’s max
memory is more than totalAllocatedMemoryForJobs

Change the max memory to a value
under the value of
totalAllocatedMemoryForJo

bs property configured on
Continuous Compliance Engine.

HM-652 Job execution is stuck in running state if mount server
is powered off

Check the health of mount server
before starting a job.

HM-663 Load process is failing with “Error disabling
constraint” for identity columns

None

HM-684 Hypescale does not support other TIMESTAMP(6)
datatype variations apart from TIMESTAMP

None

HM-718 Not all data on mount server is cleaned up if batch
masking service is stopped

Cleanup up the data manually from
mount server.

HM-745 Table name is not present in error message while
enabling/disabling triggers,indexes,constraints

Check the logs in container logs to
get table details.

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 45

Key Summary Workaround

HM-754 Able to POST/PUT a connector with whitespace as
jdbc_url, username, password

Remove white space and use valid
values for jdbc_url, username and
password.

HM-789 Error message upon not setting ‘ssl’ field to False
indicates ‘insecure_ssl’ property which no longer
exists in the schema

None

HM-812 Application on registered masking engine is not
deleted with cleanup

None

HM-817 Intermittently job fails with ORA-02270: no matching
unique or primary key for this column-list

Restart the job using PUT /

executions/{id}/restart
and it will succeed.

HM-821 Hyperscale job does not handle post load task
properly during restart if failed in pre-load (disabling
trigger/indexes/constraints) steps

After job execution is completed
successfully, check and manually
enable the disabled constraints.

HM-935 Load service fails when source DB contains BLOB type
data that is not simple text file data

None

HM-1561 Oracle Load Failure: sql loader control files doesn't
contain character length when column size is less
than 256 CHAR

None

HM-1705 Improper error message in Hyperscale status
response if CCE gets mount file system connection
error

None

Release 3.0.0

Key Summary Workaround

HM-177 Able to POST /hyperscale-masking/jobs with min job
memory > max job memory

Change the max job memory value to
higher than min job memory in API
request.

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 46

Key Summary Workaround

HM-291 Hyperscale job execution with intelligent load
balancer configured is stuck in a loop if job’s max
memory is more than totalAllocatedMemoryForJobs

Change the max memory to a value
under the value of
totalAllocatedMemoryForJo

bs property configured on
Continuous Compliance Engine.

HM-652 Job execution is stuck in running state if mount server
is powered off

Check the health of mount server
before starting a job.

HM-663 Load process is failing with “Error disabling
constraint” for identity columns

None

HM-684 Hypescale does not support other TIMESTAMP(6)
datatype variations apart from TIMESTAMP

None

HM-718 Not all data on mount server is cleaned up if batch
masking service is stopped

Cleanup up the data manually from
mount server.

HM-745 Table name is not present in error message while
enabling/disabling triggers,indexes,constraints

Check the logs in container logs to
get table details.

HM-754 Able to POST/PUT a connector with whitespace as
jdbc_url,username,password

Remove white space and use valid
values for jdbc_url, username and
password.

HM-789 Error message upon not setting ‘ssl’ field to False
indicates ‘insecure_ssl’ property which no longer
exists in the schema

None

HM-812 Application on registered masking engine is not
deleted with cleanup

None

HM-817 Intermittently job fails with ORA-02270: no matching
unique or primary key for this column-list

Restart the job using PUT /

executions/{id}/restart
and it will succeed.

HM-821 Hyperscale job does not handle post load task
properly during restart if failed in pre-load (disabling
trigger/indexes/constraints) steps

After job execution is completed
successfully, check and manually
enable the disabled constraints.

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 47

•

•

Key Summary Workaround

HM-858 Status of sub task coming wrong when overall
execution failed

None

HM-873 Intermittently there is a mismatch in loaded_rows
displayed in load task vs the actual rows loaded in
target table

None

HM-915 Load: driver support plugin throws ORA-02297: cannot
disable constraint - dependencies exist error for
foreign key

None

HM-935 Load service fails when source DB contains BLOB type
data that is not simple text file data

None

HM-1561 Oracle Load Failure: sql loader control files doesn't
contain character length when column size is less
than 256 CHAR

None

HM-1705 Improper error message in Hyperscale status
response if CCE gets mount file system connection
error

None

Release 2.0.0
The following is a list of the known issues in the Hyperscale Compliance version 2.0.0.

Key Summary Workaround

HM-294 Updated file format is not POST’ed on the
Continuous Compliance Engine if file format name is
same

After modifying the file format
content, rename the file name
of the file format.
Delete the existing uploaded
file format from the attached
Continuous Compliance
Engines before executing the
Hyperscale job with an
updated file format.

HM-291 Hyperscale job execution with intelligent load
balancer configured is stuck in a loop if job’s max
memory is more than totalAllocatedMemoryForJobs

None

Hyperscale Compliance – Hyperscale Compliance Home

Release notes– 48

Key Summary Workaround

HM-216 POST/PUT /data-sets accepts duplicate values as
source_files path in Single File Info Object

None

HM-177 Able to POST /hyperscale-masking/jobs with min job
memory > max job memory

None

HM-1705 Improper error message in Hyperscale status
response if CCE gets mount file system connection
error

None

Hyperscale Compliance – Hyperscale Compliance Home

Overview– 49

Overview
Hyperscale Compliance is an API-based interface that is designed to enhance the performance of masking large
datasets. It allows you to achieve faster masking results using the existing Delphix Continuous Compliance offering
without adding the complexity of configuring multiple jobs. Hyperscale Compliance first breaks the large and
complex datasets into numerous modules and then orchestrates the masking jobs across multiple Continuous
Compliance Engines. In general, datasets larger than 10 TB in size will see improved masking performance when
run on the Hyperscale architecture.

Hyperscale Compliance deployment architecture
For achieving faster masking results, Hyperscale Compliance uses bulk import or export utilities of data sources.
Using these utilities, it exports the data into smaller chunks of delimited files. The Hyperscale Compliance
Orchestrator then configures the masking jobs of all the respective chunks across multiple Continuous Compliance
Engines. Upon successful completion of the masking jobs, the masked data is imported back into the database.

Hyperscale Compliance components
The Hyperscale Compliance architecture consists of four components mainly; the Hyperscale Compliance
Orchestrator, Source/Target Connectors, the Continuous Compliance Engine Cluster, and the Staging Server.

Hyperscale Compliance Orchestrator
The Hyperscale Compliance Orchestrator is responsible for unloading the data from the source and horizontally
scaling the masking process by initiating multiple parallel masking jobs across nodes in the Continuous Compliance
Engine cluster. Once data is masked, it loads it back to the target data sources. Depending on the number of nodes
in the cluster, you can increase or decrease the total throughput of an individual masking job. In the case of
relational databases as source and target data sources, it also handles the pre-load (disabling indexes, triggers, and
constraints) and post-load (enabling indexes, triggers, and constraints) tasks like disabling and enabling indexes,

Hyperscale Compliance – Hyperscale Compliance Home

Overview– 50

•

•

triggers, and constraints. Currently, the Hyperscale Compliance Orchestrator supports the following two strategies
to distribute the masking jobs across nodes available :

Intelligent Load Balancing (Default): This strategy considers each Continuous Compliance Engine’s
current capacity before assigning any masking jobs to the node Continuous Compliance Engines. It
calculates the capacity using available resources on node Continuous Compliance Engines and already
running masking jobs on the engines. Below is the formula used to calculate the capacity of the Continuous
Compliance Engines:

Engine’s current jobCapacity = Engine’s total jobCapacity - no of currently running
jobs on Engine

Engine’s total jobCapacity = Minimum of {CapacityBasedOnMemory, CapacityBasedOnCores}

where
CapacityBasedOnMemory = (TotalAllocatedMemoryForJobs on Engine / MaxMemory assigned
to each Engine Job)
CapacityBasedOnCores = [Engine’s CpuCoreCount - 1]

Round robin load balancing: This strategy simply distributes the masking jobs to all the node Continuous
Compliance Engines using the round robin algorithm.

Staging area
The Staging Area is where data from the SOR is unloaded to a series of files by the Hyperscale Compliance
Orchestrator. It can be a file system that supports the NFS protocol. The file system can be attached to volumes, or
it can be supplied via the Delphix Continuous Data Engine empty VDB feature. In either case, there must be enough
storage available to hold the dataset in an uncompressed format. The staging area should be accessible by the
Continuous Compliance Engine cluster as well for masking.

Continuous Compliance Engine cluster
The Continuous Compliance Engine Cluster is a group of Delphix Continuous Compliance Engines (version 6.0.14.0
and later) leveraged by the Hyperscale Compliance Orchestrator to run large masking jobs in parallel. For installing
and configuring the Continuous Compliance Engine procedures, see Continuous Compliance Documentation.

Source and target data sources
The Hyperscale Compliance Orchestrator is responsible for unloading data from the source data source into a series
of files located in the staging area. The Hyperscale Compliance Orchestrator requires network access to the source
from the host running the Hyperscale Compliance Orchestrator and credentials to run the appropriate unload
commands. After files are masked, the masked data from the files get uploaded to the target data source.

In the case of Oracle and MS SQL data sources, a failure in the load may leave the target data source in an
inconsistent state since the load step truncates the target when it begins. If the source and target data source are
configured to be the same data source and a failure occurs in the load step, it is recommended that the single data
source be restored from a backup (or use the Continuous Data Engine’s rewind feature if you have a VDB as the
single data source) after the failure in the load step as the data source may be in an inconsistent state. After the
data source is restored, you may proceed to kick off another hyperscale job. If the source and target data source are
configured to be different, you may use the Hyperscale Compliance Orchestrator restart ability feature to restart the
job from the point of failure in the load/post-load step.

Additional data sources:

https://delphixdocs.atlassian.net/wiki/spaces/CC

Hyperscale Compliance – Hyperscale Compliance Home

Overview– 51

•

•

•

•
•
•

Delimited Files Connector: We support hyperscale masking of large delimited files (with a delimiter of
single character length). Here the source and target location are considered to be NFS locations.
MongoDB Connector: We support hyperscale masking of large MongoDB database collections. Load step of
MongoDB connector drops the target database collection if it is already present. In Hyperscale MongoDB
connector, we strongly recommend DONOT use the same collection for both the source and target,
particularly when dealing with same MongoDB instances. Utilizing the same collection for in-place masking
in such a scenario can pose risks, including potential data deletion, especially when unload, masking, and
load operations are occurring asynchronously. It's crucial to maintain a clear separation between source
and target entities to ensure data integrity and avoid unintended consequences.
Parquet Connector: We support hyperscale masking of large Parquet files. Here the source and target
location are considered to be AWS S3 buckets.

The Continuous Compliance platform
Delphix Continuous Compliance is a multi-user, a browser-based web application that provides complete, secure,
and scalable software for your sensitive data discovery, masking, and tokenization needs while meeting enterprise-
class infrastructure requirements. To read further about Continuous Compliance features and architecture, read
the Continuous Compliance Documentation.

Next steps
Read about Installation and Setup (Kubernetes) .
Read about the Network Requirements .
Read about Accessing the Hyperscale Compliance API .

In-Place Masking is NOT supported.

https://delphixdocs.atlassian.net/wiki/spaces/CC

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 52

•
•
•
•
•
•
•

Getting started
This section covers the following topics:

Hyperscale Compliance architecture
Data source support
Supported platforms
Network requirements
Deployment
NFS server installation
Accessing the Hyperscale Compliance API

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 53

•
•

•

•

•

•

•
•

•

•

Hyperscale Compliance architecture
The Hyperscale Compliance architecture comprises four components mainly; Controller Service, Unload Service,
Masking Service, and Load Service.

Controller service
The following are the main functions of a controller service:

Exposes user-accessible API.
Once the controller service receives user requests (for example, register engine, create a dataset, create a
connector, create Job, etc.), it will split the request and sends a request for further processing to
downstream services (Unload, Masking, Load) and once response is received from downstream service, the
same will be processed by controller service and returned to the user.
The controller service accepts request job execution from the user and invokes the job execution process by
invoking unload service asynchronously.
The controller service will keep polling data job execution data from the downstream service until execution
completes.
The controller service will also determine the status of job execution and store execution data in the
database.
Controller service allows you to restart a failed (Failed during File Loader, Post Load) execution

Unload service
The following are the main functions of a unload service:

Exposes APIs that are accessible to internal services only.
Unload service exposes required APIs that help the caller (controller service) to create required inputs
(source info, dataset, etc.) for job execution.
Unload service exposes an API to trigger unload from the source data source. As part of the unload process,
it performs the following operations:

Reads metadata of source data source (e.g. number of rows in a source file/table) and stores that in
the unload service database.

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 54

•

•

•

•

•
•

•

•

•
•

•

•

•
•

•

•

•
•

•

•

•

Reads data from source data source parallelly (by starting multiple parallel processes for each source
entity like tables in case of a relational database) and stores this data in .csv files.

Once data is loaded into one .csv file, unload service triggers the masking service to start the

masking process for that *.csv file.
For running execution, Unload service maintains metadata data (number of rows processed, table/file
names processed, etc.) in its database. This data can be retrieved by calling an API.
Once execution completes execution data in the database and file system gets cleaned by invoking the
corresponding API.

Masking service
The following are the main functions of a masking service:

Exposes APIs that are accessible to internal services only.
Masking services expose required APIs that help the caller (controller service) to create required inputs
(Continuous Compliance engine info, dataset, job, etc.) for job execution.
Masking service exposes an API to trigger the masking process. As part of the masking process, it performs
the following operations after receiving a masking request from unload service for a CSV file:

Based on Intelligent load balancing, create and start jobs for unloaded files on Continuous
Compliance Engines (based on the capacity of Continuous Compliance Engines associated with the
hyperscale job).
Monitor Continuous Compliance Engine jobs triggered in the previous step.
Once monitoring determines that a Continuous Compliance Engine has successfully masked the file,
send an async request to the load service (to load data into the target data source) for that masked
file.

For running execution, the Masking service maintains metadata data (number of rows processed, table/file
names processed, etc.) in its database. This data can be retrieved by calling an API.
Once execution completes execution data in the database and file system gets cleaned by invoking the
corresponding API.

Load service
The following are the main functions of a Load service:

Exposes APIs that are accessible to internal services only.
Load service exposes required APIs that help the caller to create required inputs (target data source info,
dataset, job, etc.) for job execution.
Load service exposes an API to trigger the Load process. As part of the Load process, it performs the
following operations after receiving a load request from the masking service for a masked CSV file:

Perform preload step (for example, cleaning up the target directory or disabling constraints/triggers/
indexes). These may be performed once for an execution process (not for each request from the
masking service).
Load masked files into the target data source.
Once Loading for a masked is completed, the metadata for this “file load“ will be stored in the load
service database.

For running execution, the Load service maintains metadata data (number of rows processed, table/file
names processed, etc.) in its database. This data can be retrieved by calling an API.
Once execution completes execution data in the database and file system gets cleaned by invoking the
corresponding API.
If the Load service is for a data source that requires post-load steps (e.g. Oracle, MS SQL), then it will include
post-load steps which will be triggered by the controller service once all files are successfully loaded into the
target data source.

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 55

• Load service also allows restarting for the post-load step, if post-load fails for an execution.

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 56

•

•

•
•
•
•
•
•
•
•
•

Data source support

Oracle connector
Oracle Database (commonly referred to as Oracle RDBMS or simply as Oracle) is a multi-model database
management system produced and marketed by Oracle Corporation. The following table lists the versions that
have been tested in the lab setup:

Platforms Version

Linux Oracle Database 19c Enterprise Edition Release
19.0.0.0.0 - Production - AWS
Oracle Database 18c Enterprise Edition Release
18.0.0.0.0 - Production - GCP

Supported Data Types
The following are the different data types that are tested in our lab setup:

VARCHAR
VARCHAR2
NUMBER
FLOAT
DATE
TIMESTAMP(default)
CLOB
BLOB(with text)
XMLTYPE

Property values

Property Value

SKIP.LOAD.SPLIT.COUNT.VALIDATION false

SKIP.UNLOAD.SPLIT.COUNT.VALIDATION false

For default values, see Configuration settings.

•
•

User on source database must select privileges
User on target database side must have all privileges and SELECT_CATALOG_ROLE.



Hyperscale Compliance restricts the support of the following special characters for a database column
name: ~!@#$%^&*()\\\"?:;,/\\\\`+=[]{}|<>'-.\")]



Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 57

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

Known limitations
The length of the algorithm's generated masked data may exceed the target database table’s column length
resulting in a job failure. The workaround is to use an algorithm that should generate mask data with a smaller
length.

MS SQL Connector

Supported versions
Microsoft SQL Server 2019

Supported data types
The following are the different data types that are tested in our lab setup:

VARCHAR
CHAR
DATETIME
INT
TEXT
XML (only unload/load))
VARBINARY (only unload/load)
SMALLINT
SMALLMONEY
MONEY
BIGINT
NVARCHAR
TINYINT
NUMERIC(X,Y)
DECIMAL(X,Y)
FLOAT
NCHAR
BIT
NTEXT
MONEY

Property Values

Property Value

SKIP.LOAD.SPLIT.COUNT.VALIDATION false

SKIP.UNLOAD.SPLIT.COUNT.VALIDATION false

For default values, see Configuration settings .

Known Limitations
If the applied algorithm's produced mask data exceeds the corresponding target table columns datatype's
max value range, then job execution will fail in load service.

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 58

•
•

1.
2.

3.

•

•

The constraints and indexes below are not disabled before load and are enabled back after the load process:
Partitioned Indexes

Delimited files connector
The connector can be used to mask large delimited files. The delimited unload service splits the large files into
smaller chunks and passes them onto the masking service. After the masking is completed, the files are sent to the
load service which joins back the split files (the end user also has a choice to disable the join operation).

For Delimited files connector, the splitting/joining of the files is handled by a backend tool i.e. “Data Writer”. From
the 17.0.0 release and onwards, you can choose the type of “Data Writer” you want to use based on your need as
well as understanding the limitations of each type. The supported data writers are:

“pyarrow”: Apache Arrow is used by the connector to split/join files.
“pyspark”: Apache Spark is used by the delimited-unload-service to split files. The delimited-load-service
will use Linux ‘cat’ command to join back masked split files.
“cat”: Only applicable to delimited-load-service, which uses the Linux cat command to join back masked
split files.

Prerequisites
The source and target (NFS) locations have to be mounted onto the docker containers of unload and load
service. Please note that the locations on the containers are what needs to be used when creating the
connector-info’s using the controller.

As an example
unload-service:
 image: delphix-delimited-unload-service-app:<HYPERSCALE VERSION>
 ...
 volumes:
 ...
 - /path/to/nfs/mounted/source1/files:/mnt/source1
 - /path/to/nfs/mounted/source2/files:/mnt/source2
...
load-service:
 image: delphix-delimited-load-service-app:<HYPERSCALE VERSION>
 ...
 volumes:
 ...
 - /path/to/nfs/mounted/target1/files:/mnt/target1
 - /path/to/nfs/mounted/target2/files:/mnt/target2

Set the required data writer using the DATA_WRITER_TYPE environment variable.

unload-service:
 image: delphix-delimited-unload-service-app:<HYPERSCALE VERSION>
 ...
 volumes:
 ...
 - DATA_WRITER_TYPE=pyspark
...

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 59

1.
2.
3.

•
•
•
•

1.
2.
3.

a.
b.

c.

4.
a.

load-service:
 image: delphix-delimited-load-service-app:<HYPERSCALE VERSION>
 ...
 environment:
 ...
 - DATA_WRITER_TYPE=pyspark

Property values

Property Value

SOURCE_KEY_FIELD_NAMES unique_source_files_identifier

LOAD_SERVICE_REQUIREPOSTLOAD false

DATA_WRITER_TYPE “pyarrow” (Default for delimited-unload-service)
“pyspark”
“cat” (Default as well as only applicable to delimited-
load-service)

UNLOAD_SPARK_DRIVER_MEMORY 90% of available memory

UNLOAD_SPARK_DRIVER_CORES 90% of available cores

For default values, see Configuration settings.

Supported data types
The following are the supported data types for delimited files hyperscale connector:

String/Text
Double
Int64
Timestamp

Known limitations
Supports only Single-character ASCII delimiters
The end-of-record character can only be \n , \r , or \r\n .
Limitations with PyArrow Data Writer:

Output files will exclusively enclose all string types with double quotes (`”`).
Columns with double data types will be converted to strings. For example, 6377974237282886994505
will be converted to “36377974237282886994505".
Columns with int64 data type will be converted to strings. For example, 0009435304391722556805
will be converted to “00009435304391722556805".

Limitation with PySpark Data Writer:
PySpark is more memory intensive, so in case we are processing data that is more in size in
comparison to the available memory then we may run into issues related to resource

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 60

b.

c.

1.

2.

exhaustion. Caution: The size of split files multiplied by the number of cores must not exceed the
system memory.
With PyAarrow as the data writer, the split files are generated one after the other, so the masking-
service is called as and when a split is created. With PySpark as the data writer, all split files are
available only after the split process is complete. So the masking service will be only called after all
splits are completed. Due to this, the overall time taken to complete the hyperscale masking
execution will be more compared to the former.
There is a possibility that the number of splits created in the end will be less than the requested
number, this generally happens when the file size is small, and spark doesn’t create as many
partitions as the requested split number.

MongoDB connector
The connector can be used to mask large MongoDB files. The Mongo unload service splits the large collections into
smaller chunks and passes them onto the masking service. After the masking is completed, the files are sent to the
Mongo load service, which imports the masked files into the target collection.

Supported versions

Platforms Version

Linux MongoDB 4.4.x

MongoDB 5.0.x

MongoDB 6.0.x

Prerequisites
MongoDB users should have the following privileges:

use admin
db.createUser({user:"backupadmin", pwd:"xxxxxx", roles:[{role:"backup", db:
"admin"}]})

Mongo Unload and Mongo Load service image names are to be used under unload-service and load-service.
The NFS location has to be mounted onto the Docker containers for unload and load services. Example for
mounting /mnt/hyperscale .

As an example docker-compose.yaml
unload-service:
 image: delphix-mongo-unload-service-app:${VERSION}
volumes:
 # Uncomment below lines to mount respective paths.
 - /mnt/hyperscale:/etc/hyperscale

load-service:
 image: delphix-mongo-load-service-app:${VERSION}
volumes:

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 61

2.

3.

4.

 # Uncomment below lines to mount respective paths.
 - /mnt/hyperscale:/etc/hyperscale

Uncomment the below lines from docker-compose.yaml file under controller >

environment :

uncomment below for MongoDB connector
#- SOURCE_KEY_FIELD_NAMES=database_name,collection_name
#- VALIDATE_UNLOAD_ROW_COUNT_FOR_STATUS=${VALIDATE_UNLOAD_ROW_COUNT_FOR_STATUS:-false
}
#- VALIDATE_MASKED_ROW_COUNT_FOR_STATUS=${VALIDATE_MASKED_ROW_COUNT_FOR_STATUS:-false
}
#- VALIDATE_LOAD_ROW_COUNT_FOR_STATUS=${VALIDATE_LOAD_ROW_COUNT_FOR_STATUS:-false}
#- DISPLAY_BYTES_INFO_IN_STATUS=${DISPLAY_BYTES_INFO_IN_STATUS:-true}
#- DISPLAY_ROW_COUNT_IN_STATUS=${DISPLAY_ROW_COUNT_IN_STATUS:-false}

Set the value of LOAD_SERVICE_REQUIRE_POST_LOAD=false inside the “ .env ” file.

Set LOAD_SERVICE_REQUIRE_POST_LOAD=false for MongoDB Connector
LOAD_SERVICE_REQUIRE_POST_LOAD=false

Uncomment the below lines from “ .env ” file.

Uncomment below for MongoDB Connector
#VALIDATE_UNLOAD_ROW_COUNT_FOR_STATUS=false
#VALIDATE_MASKED_ROW_COUNT_FOR_STATUS=false
#VALIDATE_LOAD_ROW_COUNT_FOR_STATUS=false
#DISPLAY_BYTES_INFO_IN_STATUS=true
#DISPLAY_ROW_COUNT_IN_STATUS=false

Property values

Mandatory changes are required for the MongoDB Connector in the docker-compose.yaml and .env files:

Property Value

SOURCE_KEY_FIELD_NAMES database_name,collection_name

LOAD_SERVICE_REQUIRE_POST_LOAD false

VALIDATE_UNLOAD_ROW_COUNT_FOR_STATUS false

VALIDATE_MASKED_ROW_COUNT_FOR_STATUS false

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 62

•

•

•

•
•

•

Property Value

VALIDATE_LOAD_ROW_COUNT_FOR_STATUS false

DISPLAY_BYTES_INFO_IN_STATUS true

DISPLAY_ROW_COUNT_IN_STATUS false

For default values, see Configuration settings.

Known limitation:
In-Place Masking is not supported.

Parquet connector
The connector can be used to mask large Parquet files. The parquet unload service splits the large files into smaller
chunks and passes them onto the masking service. After the masking is completed, the files are sent to the load
service, which joins back the split files (you also have a choice to disable the join operation).

Prerequisites
As mounted filesystems are compatible with both source and target locations, it is necessary to mount the
source and target (NFS) locations onto the docker containers of the unload and load services. Note down the
locations on the containers that need to be used when creating the connector-info using the controller.

As an example
unload-service:
 image: delphix-parquet-unload-service-app:<HYPERSCALE VERSION>
 ...
 volumes:
 ...
 - /path/to/nfs/mounted/source1/files:/mnt/source1
 - /path/to/nfs/mounted/source2/files:/mnt/source2
...
load-service:
 image: delphix-parquet-load-service-app:<HYPERSCALE VERSION>
 ...
 volumes:
 ...
 - /path/to/nfs/mounted/target1/files:/mnt/target1
 - /path/to/nfs/mounted/target2/files:/mnt/target2

The connector should be able to access the AWS S3 buckets (the source and target locations). The following
approaches are supported by the connector and can be used to authenticate with the S3 bucket:

Attaching the IAM role to the EC2 instance where the hyperscale masking services will be deployed.
IAM Roles are designed for applications to securely make AWS-API requests from EC2
instances, without the necessity to manage the security credentials that the applications use.
Using the AWS console UI or AWS CLI, attach the IAM role to the EC2 instance running the
Hyperscale services. To know more, check the AWS Documentation.

https://hyperscalemasking.delphix.com/docs/latest/configuration-settings
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 63

•

•
•

•

With IAM role authentication, there is no need to pass the AWS credentials during the
connector-info creation.

Example connector-info payload
{
 "source": {
 "type": "AWS",
 "properties": {
 "server": "S3",
 "path": "aws_s3_bucket/sub_folder(s)"
 }
 },
 "target": {
 "type": "AWS",
 "properties": {
 "server": "S3",
 "path": "aws_s3_bucket/sub_folder(s)"
 }
 }
}

Passing the AWS Access Key ID & AWS Secret Access Key attached to an AWS role:
Access keys are long-term credentials generated for an IAM user or role. These keys can be for
programmatic requests to the AWS CLI or AWS API (directly or using the AWS SDK). To know
more, check the AWS Documentation.
These credentials can be passed during the connector-info creation.

Example connector-info payload
{
 "source": {
 "type": "AWS",
 "properties": {
 "server": "S3",
 "path": "aws_s3_bucket/sub_folder(s)",
 "aws_region": "us-west-2",
 "aws_access_key_id": "AWS_ACCESS_KEY_ID",
 "aws_secret_access_key": "AWS_SECRET_ACCESS_KEY"
 }
 },
 "target": {
 "type": "AWS",
 "properties": {
 "server": "S3",
 "path": "aws_s3_bucket/sub_folder(s)",
 "aws_region": "us-west-2",
 "aws_access_key_id": "AWS_ACCESS_KEY_ID",
 "aws_secret_access_key": "AWS_SECRET_ACCESS_KEY"
 }
 }
}

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 64

•

•
•
•
•
•
•
•

They can also be set as environment variables when bringing up the Parquet connector
services.

unload-service:
 ...
 environment:
 - AWS_DEFAULT_REGION=us-east-1
 - AWS_ACCESS_KEY_ID=<aws_access_key_id>
 - AWS_SECRET_ACCESS_KEY=<aws_secret_access_key>

 ...
 load-service:
 ...
 environment:
 - AWS_DEFAULT_REGION=us-east-1
 - AWS_ACCESS_KEY_ID=<aws_access_key_id>
 - AWS_SECRET_ACCESS_KEY=<aws_secret_access_key>

Property values
Configurations on the controller service:

Property Value

SOURCE_KEY_FIELD_NAMES unique_source_files_identifier

LOAD_SERVICE_REQUIREPOSTLOAD false

Configuration on the parquet-unload-service:

Property Value

MAX_WORKER_THREADS_PER_JOB 512

For default values, see Configuration settings.

Supported data types
The following are the supported data types for parquet files hyperscale connector:

BOOLEAN
INT32
INT64
INT96
FLOAT
DOUBLE
BYTE_ARRAY

https://hyperscalemasking.delphix.com/docs/latest/configuration-settings

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 65

•

Known limitations
Generally, the parquet files are compressed and the compression factor could vary from 2x to 70x or even
more. So, when working with such larger files the connector will need a host which has large enough
memory to accommodate the parallel execution of multiple large parquet files. In case the sum of the
uncompressed size of parquet files that are getting executed in parallel exceeds 80% of RAM size then the
chances of having an “out of memory” error are high. To avoid OOM, the end user can reduce the
MAX_WORKER_THREADS_PER_JOB (i.e. reduce the number of parallel threads), ultimately reducing the
memory usage.

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 66

Supported platforms
Delphix supports Hyperscale Compliance for many data platforms and operating systems.

Supported Continuous Compliance/Data versions

Delphix Engine Minimum supported version Recommended version

Continuous Compliance 6.0.14.0

15.0.0.0 (for embedded XML/JSON
masking)

Latest

Continuous Data 6.0.14.0 Latest

Supported browsers (only API client)
Hyperscale Compliance API Client is using Swagger UI-3.48.0 which works in the latest versions of Chrome, Safari,
Firefox, and Edge. For more information about the supported browser versions, see the Browser Support section
on GitHub.

All Continuous Compliance Engines must be of the same versions and must be used only by Hyperscale
Compliance for masking. Already existing or running masking/profiling jobs on Continuous Compliance
engines would impact Hyperscale Compliance performance and results.



•

•
•

•

If you encounter Chrome NET::ERR_CERT_INVALID error code, perform the following steps to
resolve the above error:

Type https://<hyperscale-compliance-host address>/hyperscale-

compliance in the address bar and click Enter.
Right-click on the page and click Inspect.
Click the Console tab and run the following command:
sendCommand(SecurityInterstitialCommandId.CMD_PROCEED) .

Click on Authorize and provide the key. For more information about the key, refer to step 7 in
Generate a New Key.



https://github.com/swagger-api/swagger-ui#browser-support

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 67

Network requirements
This section describes the network requirements for Hyperscale Compliance. Ensure that you meet all the network
requirements before you install the Hyperscale Compliance Orchestrator.

The following are the inbound/outbound rules for the Hyperscale Compliance Orchestrator:

Type (Inbound/Outbound) Port Reason

Inbound and Outbound 80 HTTP connections to/from the
Hyperscale Compliance
Orchestrator to/from the
Continuous Compliance Engines
part of the Continuous Compliance
Engine Cluster and to access the
Hyperscale Compliance API.

Inbound and Outbound 443 HTTPs connections to/from the
Hyperscale Compliance
Orchestrator to/from the
Continuous Compliance Engines
part of the Continuous Compliance
Engine Cluster and to access the
Hyperscale Compliance API.

Outbound 53 Connections to local DNS servers.

Inbound 22 SSH connections to the Hyperscale
Compliance Orchestrator host.

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 68

•
•
•

Deployment
This section covers the following topics:

Docker compose
Kubernetes
Podman compose

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 69

•
•
•
•
•
•
•

Docker compose

This section covers the following topics:

Host requirements (Docker compose)
Installation and setup (Docker compose)
Custom configuration
Upgrading the Hyperscale Compliance Orchestrator (Docker Compose)
How to generate a support bundle (Docker compose)
Managing the storage space
Migrating to Kubernetes

Delphix has announced the depreciation of support for Docker Compose with Hyperscale version
17.0.0. The January 2024 release starts a 12-month depreciation period for all supported versions on
Docker Compose. All prior and current product versions will continue to be supported on Docker
Compose until January 2025. It is highly recommended that new Hyperscale installations be performed on
Kubernetes.



Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 70

•

•

•

•

Host requirements (Docker compose)

Type Host Requirement Explanation

User A user (hyperscale_os) with the
following permissions are required:

Should have permissions to
install docker and

docker-compose .
Should be part of the
'docker' OS group or must
have the permission to run
docker and docker-

compose commands.
Permission to run mount,
unmount, mkdir and rmdir
as a super-user with
NOPASSWD.
Should have either GID=50
and/or UID=65436.

This will be a primary user
responsible to install and operate
the Hyperscale Compliance.

Installation Directory There must be a directory on the
Hyperscale Compliance
Orchestrator host where the
Hyperscale Compliance can be
installed.

This is a directory where the
Hyperscale Compliance tar archive
file will be placed and extracted.
The extracted artifacts will include
docker images(tar archive files)
and a configuration file(docker-
compose.yaml) that will be used to
install the Hyperscale Compliance.

Log File Directory An optional directory to place log
files.

This directory (can be configured
via docker-compose.yaml
configuration file) will host the
runtime/log files of the Hyperscale
Compliance Orchestrator.

NFS Client Services NFS client services must be
enabled on the host.

NFS client service is required to be
able to mount an NFS shared
storage from where the Hyperscale
Compliance Orchestrator will be
able to read the source files and
write the target files. For more
information, see NFS Server
Installation.

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 71

•

•

Type Host Requirement Explanation

Hardware Requirements Minimum:
8 vCPU, 64 GB of memory,
100GB data disk.
Recommended:
16 vCPU, 128GB of memory,
500GB data disk.

OS disk space: 50 GB

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 72

•

•
•
•
•

•

•

•

Installation and setup (Docker compose)

This section describes the steps you must perform to install the Hyperscale Compliance Orchestrator.

Hyperscale Compliance installation

Pre-requisites

Ensure that you meet the following requirements before you install the Hyperscale Compliance Orchestrator.

Download the Hyperscale tar file (delphix-hyperscale-masking-x.0.0.tar.gz) from

download.delphix.com. where x.0.0 should be changed to the version of Hyperscale being installed
You must create a user that has permission to install Docker and Docker Compose.
Install Docker on VM. The minimum supported docker version is 20.10.7.
Install Docker Compose on the VM. The minimum supported docker-compose version is 1.29.2.
Check if docker and docker-compose are installed by running the following command:

docker-compose -v The above command displays an output similar to the following:

docker-compose version 1.29.2, build 5becea4c

docker -v The above command displays an output similar to the following: Docker version

20.10.7, build 3967b7d
[Only Required for Oracle Load Service] Download and install Linux-based Oracle’s instant client on the
machine where the Hyperscale Compliance Orchestrator will be installed. The client should essentially
include instantclient-basic (Oracle shared libraries) along with instantclient-tools

containing Oracle’s SQL*Loader client. Both the packages instantclient-basic and instantclient-tools
should be unzipped in the same directory. A group ownership id of 50 with a permission mode of 550 or a
user id of 65436 with a permission mode of 500 must be set recursively on the directory where Oracle’s
instant client binaries/libraries will be installed. This is required by the Hyperscale Compliance
Orchestrator to be able to read or execute from the directory.

Procedure

Perform the following procedure to install the Hyperscale Compliance Orchestrator.

1. Unpack the Hyperscale tar file (where x.0.0 should be changed to the version of Hyperscale being installed).

tar -xzf delphix-hyperscale-masking-x.0.0.tar.gz

2. Upon unpacking, you will find the docker image tar files which are categorized as below:

Universal images common for all connectors.

Delphix has announced the depreciation of support for Docker Compose with Hyperscale version
17.0.0. The January 2024 release starts a 12-month depreciation period for all supported versions on
Docker Compose. All prior and current product versions will continue to be supported on Docker
Compose until January 2025. It is highly recommended that new Hyperscale installations be performed on
Kubernetes.



Oracle Load doesn’t support Object Identifiers(OIDs).

https://download.delphix.com/folder/2224/Delphix%20Product%20Releases/Hyperscale%20Compliance
https://www.oracle.com/database/technologies/instant-client.html

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 73

•

•

•

•

•

•

•

•

•

•

•

•

•

controller-service.tar

masking-service.tar

proxy.tar

 Oracle (required only for Oracle data source masking)

unload-service.tar

load-service.tar

 MSSQL (required only for MS SQL data source masking)

mssql-unload-service.tar

mssql-load-service.tar

 Delimited Files (required only for Delimited Files masking)

delimited-unload-service.tar

delimited-load-service.tar

 MongoDB (required only for MongoDB database masking)

mongo-unload-service.tar

mongo-load-service.tar

Parquet files (required only for Parquet file masking)

parquet-unload-service.tar

parquet-load-service.tar

Each deployment set consists of 5 images (3 Universal images and 2 images related to each dataset type).
Proceed to load the required images into Docker as below:

For Oracle data source masking:

docker load --input unload-service.tar
docker load --input load-service.tar
docker load --input controller-service.tar
docker load --input masking-service.tar
docker load --input proxy.tar

For MS SQL data source masking:

docker load --input mssql-unload-service.tar
docker load --input mssql-load-service.tar
docker load --input controller-service.tar
docker load --input masking-service.tar
docker load --input proxy.tar

For Delimited Files masking:

docker load --input delimited-unload-service.tar

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 74

1.

•

•

2.

docker load --input delimited-load-service.tar
docker load --input controller-service.tar
docker load --input masking-service.tar
docker load --input proxy.tar

For MongoDB data source masking:

docker load --input mongo-unload-service.tar
docker load --input mongo-load-service.tar
docker load --input controller-service.tar
docker load --input masking-service.tar
docker load --input proxy.tar

For Parquet masking:

docker load --input parquet-unload-service.tar
docker load --input parquet-load-service.tar
docker load --input controller-service.tar
docker load --input masking-service.tar
docker load --input proxy.tar

3. Create an NFS shared mount, that will act as a Staging Area, on the Hyperscale Compliance Orchestrator host
where the Hyperscale Compliance Orchestrator will perform read/write/execute operations:

Create a ‘Staging Area’ directory. For example: /mnt/hyperscale/staging_area . The user(s) within
each of the docker containers part of the Hyperscale Compliance Orchestrator and the appliance OS user(s)
in the Continuous Compliance Engine(s), all have the user id as 65436 and/or group ownership id as 50. As
such, the ‘staging_area’ directory, along with the directory(hyperscale) one level above, require the
following permissions, based on the UID/GID of the OS user, so that the Hyperscale Compliance Orchestrator
and the Continuous Compliance Engine(s) can perform read/write/execute operations on the staging area:

If the Hyperscale Compliance OS user has a UID of 65436, then the ‘staging_area’ directory, along
with the directory(hyperscale) one level above, must have a UID of 65436 and 700 permission
mode.
If the Hyperscale Compliance OS user has a GID of 50 and does not have a UID of 65436, then the
‘staging_area’ directory, along with the directory(hyperscale) one level above, must have a GID
of 50 and 770 permission mode.

Mount the NFS shared directory on the staging area directory(/mnt/hyperscale/staging_area).
This NFS shared storage can be created and mounted in two ways as detailed in the NFS Server Installation
section. Based on the umask value for the user which is used to mount, the permissions for the staging area
directory could get altered after the NFS share has been mounted. In such cases, the permissions(i.e. 770 or
700 whichever applies based on point 3a) must be applied again on the staging area directory.

4. After unpacking the tar, you will find the following sample docker-compose files available, docker-compose-

sample.yaml , docker-compose-oracle-sample.yaml , docker-compose-mssql-sample.yaml ,

docker-compose-delimitedfiles-sample.yaml , docker-compose-mongo-sample.yaml , and

The directory created in step 3a (‘staging_area’) will be provided as the mountName and the

corresponding shared path from the NFS file server as the mountPath in the MountFileSystems API.



https://portal.document360.io/continuous-compliance/docs/nfs-server-installation

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 75

1.

2.

3.

4.

docker-compose-parquet-sample.yaml .These sample files can be used to create a docker-

compose.yaml file based on the connector you want to use. Configure the following docker container volume

bindings for the docker containers by editing the docker-compose.yaml :

For each of the docker containers, except the ‘proxy’ container, add a volume entry binding the staging area
path (from 3(a), /mnt/hyperscale) to the Hyperscale Compliance Orchestrator container path(/etc/

hyperscale) as a volume binding under the ‘volumes’ section.
[Only Required for Oracle Load Service] For the load-service docker container, add a volume entry that
binds the path of the directory on the host where both the Oracle instant Client packages were unzipped to
the path on the container (/usr/lib/instantclient) under the ‘volumes’ section.
[Only Required for Delimited Unload Service] For Delimited Files unload-service, the source NFS location has
to be mounted to the container as docker volume in order for it to access the source files. The path mounted
on the container is passed during the creation of the source connector-info.

Mount your source NFS location onto your Hyperscale Engine server
sudo mount [-t nfs4] <source_nfs_endpoint>:<source_nfs_location>
<nfs_mount_on_host>

Later mount <nfs_mount_on_host> as a docker volume to the delimited unload-
service container (in docker-compose.yaml, created using docker-compose-
delimitedfiles-sample.yaml)
unload-service:
 image: delphix-delimited-unload-service-app:<HYPERSCALE VERSION>
 ...
 volumes:
 ...
 # Source files should be made available within the unload-service
container file system
 # The paths within the container should be configured in the source
section of connector-info [with type=FS]
 -
<nfs_mount_on_host>:<source_files_mount_passed_during_connector_info_creation_p
ath_in_contianer>

[Only Required for Delimited load Service] For Delimited Files load-service, the target NFS location has to be
mounted to the container as docker volume in order for it to access the target location where masked files
will be placed. The path mounted on the container is passed during the creation of the target connector-
info.

Mount your target NFS location onto your Hyperscale Engine server
sudo mount [-t nfs4] <target_nfs_endpoint>:<target_nfs_location>
<target_nfs_mount_on_host>

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 76

5.

•
•
•

Later mount <nfs_mount_on_host> as a docker volume to the delimited load-
service container (in docker-compose.yaml, created using docker-compose-
delimitedfiles-sample.yaml)
load-service:
 image: delphix-delimited-load-service-app:${VERSION}
 ...
 volumes:
 ...
 # Target location should be made available within the load-service
container file system
 # The paths within the container should be configured in the target
section of connector-info [with type=FS]
 -
<target_nfs_mount_on_host>:<target_location_passed_during_connector_info_creati
on_in_container>

[Optional] Some data (for example, logs, configuration files, etc.) that is generated inside the docker
containers may be useful to debug possible errors or exceptions while running the hyperscale jobs, and as
such it may be beneficial to persist these logs outside docker containers. The following data can be persisted
outside the docker containers:

The logs generated for each service i.e. unload, controller, masking, and load services.
The sqlldr utility logs and control files at opt/sqlldr location in the load-service container.
The file-upload folder at /opt/delphix/uploads in the controller-service container

If you would like to persist the above data on your host, then you have the option to do the same by setting up
volume bindings in the respective service as indicated below, that map locations inside the docker containers
to locations on the host in the docker-compose.yaml file. The host locations again must have a group
ownership id of 50 with a permission mode of 770 or a user id of 65436 with a permission of 700, due to the
same reasons as highlighted in step 3a.

Here are examples of the docker-compose.yaml file for Oracle, MS SQL, MongoDB data sources, Delimited file
masking, and Parquet file masking:

For Oracle data source masking:

version: "3.7"
services:
 controller-service:
 image: delphix-controller-service-app:${VERSION}
 healthcheck:
 test: 'curl --fail --silent http://localhost:8080/actuator/health | grep UP ||
exit 1'
 interval: 30s
 timeout: 25s
 retries: 3
 start_period: 30s
 depends_on:
 - unload-service
 - masking-service
 - load-service
 init: true
 networks:

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 77

 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-controller-data:/data
 # The orchestrator VM paths(left side of colon) used here are examples.
Configure the respective mount paths.
 - /home/hyperscale_user/logs/controller_service:/opt/delphix/logs
 - /mnt/hyperscale:/etc/hyperscale
 environment:
 - API_KEY_CREATE=${API_KEY_CREATE:-false}
 - EXECUTION_STATUS_POLL_DURATION=${EXECUTION_STATUS_POLL_DURATION:-12000}
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=${LOG_LEVEL_CONTROLLER_SERVICE:-INFO}
 - API_VERSION_COMPATIBILITY_STRICT_CHECK=$
{API_VERSION_COMPATIBILITY_STRICT_CHECK:-false}
 - LOAD_SERVICE_REQUIREPOSTLOAD=${LOAD_SERVICE_REQUIRE_POST_LOAD:-true}
 - SKIP_UNLOAD_SPLIT_COUNT_VALIDATION=$
{SKIP_UNLOAD_SPLIT_COUNT_VALIDATION:-false}
 - SKIP_LOAD_SPLIT_COUNT_VALIDATION=${SKIP_LOAD_SPLIT_COUNT_VALIDATION:-false}
 - CANCEL_STATUS_POLL_DURATION=${CANCEL_STATUS_POLL_DURATION:-60000}
 unload-service:
 image: delphix-unload-service-app:${VERSION}
 init: true
 environment:
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=${LOG_LEVEL_UNLOAD_SERVICE:-INFO}
 - UNLOAD_FETCH_ROWS=${UNLOAD_FETCH_ROWS:-10000}
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-unload-data:/data
 # The orchestrator VM paths(left side of colon) used here are examples.
Configure the respective mount paths.
 - /mnt/hyperscale:/etc/hyperscale
 - /home/hyperscale_user/logs/unload_service:/opt/delphix/logs
 masking-service:
 image: delphix-masking-service-app:${VERSION}
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-masking-data:/data
 # The orchestrator VM paths(left side of colon) used here are examples.
Configure the respective mount paths.
 - /mnt/hyperscale:/etc/hyperscale
 - /home/hyperscale_user/logs/masking_service:/opt/delphix/logs
 environment:
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=${LOG_LEVEL_MASKING_SERVICE:-INFO}
 - INTELLIGENT_LOADBALANCE_ENABLED=${INTELLIGENT_LOADBALANCE_ENABLED:-true}
 load-service:
 image: delphix-load-service-app:${VERSION}
 init: true
 environment:

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 78

 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=${LOG_LEVEL_LOAD_SERVICE:-INFO}
 - SQLLDR_BLOB_CLOB_CHAR_LENGTH=${SQLLDR_BLOB_CLOB_CHAR_LENGTH:-20000}
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-load-data:/data
 # The orchestrator VM paths(left side of colon) used here are examples.
Configure the respective mount paths.
 - /mnt/hyperscale:/etc/hyperscale
 - /opt/oracle/instantclient_21_5:/usr/lib/instantclient
 - /home/hyperscale_user/logs/load_service:/opt/delphix/logs
 - /home/hyperscale_user/logs/load_service/sqlldr:/opt/sqlldr/
 proxy:
 image: delphix-hyperscale-masking-proxy:${VERSION}
 init: true
 networks:
 - hyperscale-net
 ports:
 - "443:443"
 restart: unless-stopped
 depends_on:
 - controller-service
 #volumes:
 # Uncomment to bind mount /etc/config
 #- /nginx/config/path/on/host:/etc/config
networks:
 hyperscale-net:
volumes:
 hyperscale-load-data:
 hyperscale-unload-data:
 hyperscale-masking-data:
 hyperscale-controller-data:

For MS SQL data source masking:

version: "3.7"
services:
 controller-service:
 image: delphix-controller-service-app:${VERSION}
 healthcheck:
 test: 'curl --fail --silent http://localhost:8080/actuator/health | grep UP ||
exit 1'
 interval: 30s
 timeout: 25s
 retries: 3
 start_period: 30s
 depends_on:
 - unload-service
 - masking-service
 - load-service
 init: true

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 79

 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-controller-data:/data
 # The orchestrator VM paths(left side of colon) used here are examples.
Configure the respective mount paths.
 - /home/hyperscale_user/logs/controller_service:/opt/delphix/logs
 - /mnt/hyperscale:/etc/hyperscale
 environment:
 - API_KEY_CREATE=${API_KEY_CREATE:-false}
 - EXECUTION_STATUS_POLL_DURATION=${EXECUTION_STATUS_POLL_DURATION:-12000}
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=${LOG_LEVEL_CONTROLLER_SERVICE:-INFO}
 - API_VERSION_COMPATIBILITY_STRICT_CHECK=$
{API_VERSION_COMPATIBILITY_STRICT_CHECK:-false}
 - LOAD_SERVICE_REQUIREPOSTLOAD=${LOAD_SERVICE_REQUIRE_POST_LOAD:-true}
 - SKIP_UNLOAD_SPLIT_COUNT_VALIDATION=$
{SKIP_UNLOAD_SPLIT_COUNT_VALIDATION:-false}
 - SKIP_LOAD_SPLIT_COUNT_VALIDATION=${SKIP_LOAD_SPLIT_COUNT_VALIDATION:-false}
 - CANCEL_STATUS_POLL_DURATION=${CANCEL_STATUS_POLL_DURATION:-60000}
 unload-service:
 image: delphix-mssql-unload-service-app:${VERSION}
 init: true
 environment:
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=${LOG_LEVEL_UNLOAD_SERVICE:-INFO}
 - UNLOAD_FETCH_ROWS=${UNLOAD_FETCH_ROWS:-10000}
 - SPARK_DATE_TIMESTAMP_FORMAT=${DATE_TIMESTAMP_FORMAT:-yyyy-MM-dd
HH:mm:ss.SSSS}
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-unload-data:/data
 # The orchestrator VM paths(left side of colon) used here are examples.
Configure the respective mount paths.
 - /mnt/hyperscale:/etc/hyperscale
 - /home/hyperscale_user/logs/unload_service:/opt/delphix/logs
 masking-service:
 image: delphix-masking-service-app:${VERSION}
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-masking-data:/data
 # The orchestrator VM paths(left side of colon) used here are examples.
Configure the respective mount paths.
 - /mnt/hyperscale:/etc/hyperscale
 - /home/hyperscale_user/logs/masking_service:/opt/delphix/logs
 environment:
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=${LOG_LEVEL_MASKING_SERVICE:-INFO}
 - INTELLIGENT_LOADBALANCE_ENABLED=${INTELLIGENT_LOADBALANCE_ENABLED:-true}
 load-service:

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 80

 image: delphix-mssql-load-service-app:${VERSION}
 init: true
 environment:
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=${LOG_LEVEL_LOAD_SERVICE:-INFO}
 - SQLLDR_BLOB_CLOB_CHAR_LENGTH=${SQLLDR_BLOB_CLOB_CHAR_LENGTH:-20000}
 - SPARK_DATE_TIMESTAMP_FORMAT=${DATE_TIMESTAMP_FORMAT:-yyyy-MM-dd
HH:mm:ss.SSSS}
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-load-data:/data
 # The orchestrator VM paths(left side of colon) used here are examples.
Configure the respective mount paths.
 - /mnt/hyperscale:/etc/hyperscale
 - /home/hyperscale_user/logs/load_service:/opt/delphix/logs
 proxy:
 image: delphix-hyperscale-masking-proxy:${VERSION}
 init: true
 networks:
 - hyperscale-net
 ports:
 - "443:443"
 restart: unless-stopped
 depends_on:
 - controller-service
 #volumes:
 # Uncomment to bind mount /etc/config
 #- /nginx/config/path/on/host:/etc/config
networks:
 hyperscale-net:
volumes:
 hyperscale-load-data:
 hyperscale-unload-data:
 hyperscale-masking-data:
 hyperscale-controller-data:

For Delimited Files masking:

A sample file specific to the Delimited connector is available in the package called docker-compose-

delimitedfiles-sample.yaml.

version: "3.7"
services:
 controller-service:
 image: delphix-controller-service-app:<HYPERSCALE VERSION>
 healthcheck:
 test: 'curl --fail --silent http://localhost:8080/actuator/health | grep UP ||
exit 1'
 interval: 30s
 timeout: 25s
 retries: 3

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 81

 start_period: 30s
 depends_on:
 - unload-service
 - masking-service
 - load-service
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-controller-data:/data
 # The orchestrator VM paths(left side of colon) used here are examples.
Configure the respective mount paths.
 - /mnt/parent_staging_area:/etc/hyperscale
 environment:
 - API_KEY_CREATE=true
 - EXECUTION_STATUS_POLL_DURATION=120000
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=INFO
 - API_VERSION_COMPATIBILITY_STRICT_CHECK=false
 - LOAD_SERVICE_REQUIREPOSTLOAD=false
 - SKIP_UNLOAD_SPLIT_COUNT_VALIDATION=false
 - SKIP_LOAD_SPLIT_COUNT_VALIDATION=false
 - CANCEL_STATUS_POLL_DURATION=60000
 - SOURCE_KEY_FIELD_NAMES=unique_source_files_identifier
 unload-service:
 image: delphix-delimited-unload-service-app:<HYPERSCALE VERSION>
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-unload-data:/data
 # Staging area volume mount, here /mnt/parent_staging_area is used as an
example
 # The orchestrator VM paths(left side of colon) used here are examples.
Configure the respective mount paths.
 - /mnt/parent_staging_area:/etc/hyperscale
 # Source files should be made available within the unload-service container
file system
 # The paths within the container should be configured in the source section of
connector-info [with type=FS]
 - /mnt/source_files:/mnt/source
 #- /mnt/source_files2:/mnt/source2
 masking-service:
 image: delphix-masking-service-app:<HYPERSCALE VERSION>
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-masking-data:/data
 # Staging area volume mount, here /mnt/parent_staging_area is used as an
example

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 82

 # The orchestrator VM paths(left side of colon) used here are examples.
Configure the respective mount paths.
 - /mnt/parent_staging_area:/etc/hyperscale
 environment:
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=INFO
 - INTELLIGENT_LOADBALANCE_ENABLED=true
 load-service:
 image: delphix-delimited-load-service-app:<HYPERSCALE VERSION>
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-load-data:/data
 # Staging area volume mount, here /mnt/parent_staging_area is used as an
example
 # The orchestrator VM paths(left side of colon) used here are examples.
Configure the respective mount paths.
 - /mnt/parent_staging_area:/etc/hyperscale
 # Target location should be made available within the load-service container
file system
 # The paths within the container should be configured in the target section of
connector-info [with type=FS]
 - /mnt/target_files:/mnt/target
 #- /mnt/target_files2:/mnt/target2
 proxy:
 image: delphix-hyperscale-masking-proxy:<HYPERSCALE VERSION>
 init: true
 networks:
 - hyperscale-net
 ports:
 - "443:443"
 - "80:80"
 restart: unless-stopped
 depends_on:
 - controller-service
networks:
 hyperscale-net:
volumes:
 hyperscale-load-data:
 hyperscale-unload-data:
 hyperscale-masking-data:
 hyperscale-controller-data:

For MongoDB data source masking:

Copyright (c) 2021, 2023 by Delphix. All rights reserved.
version: "3.7"
services:
 controller-service:
 build:
 context: controller-service

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 83

 args:
 - VERSION=${VERSION}
 image: delphix-controller-service-app:${VERSION}
 healthcheck:
 test: 'curl --fail --silent http://localhost:8080/actuator/health | grep UP
|| exit 1'
 interval: 30s
 timeout: 25s
 retries: 3
 start_period: 30s
 depends_on:
 - unload-service
 - masking-service
 - load-service
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-controller-data:/data
 # The orchestrator VM paths(left side of colon) used here are examples.
Configure the respective mount paths.
 - /home/hyperscale_user/logs/controller_service:/opt/delphix/logs
 - /mnt/hyperscale:/etc/hyperscale

 environment:
 - API_KEY_CREATE=${API_KEY_CREATE:-false}
 - EXECUTION_STATUS_POLL_DURATION=${EXECUTION_STATUS_POLL_DURATION:-120000}
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=${LOG_LEVEL_CONTROLLER_SERVICE:-
INFO}
 - API_VERSION_COMPATIBILITY_STRICT_CHECK=$
{API_VERSION_COMPATIBILITY_STRICT_CHECK:-false}
 - LOAD_SERVICE_REQUIREPOSTLOAD=${LOAD_SERVICE_REQUIRE_POST_LOAD:-true}
 - SKIP_UNLOAD_SPLIT_COUNT_VALIDATION=$
{SKIP_UNLOAD_SPLIT_COUNT_VALIDATION:-false}
 - SKIP_LOAD_SPLIT_COUNT_VALIDATION=$
{SKIP_LOAD_SPLIT_COUNT_VALIDATION:-false}
 - CANCEL_STATUS_POLL_DURATION=${CANCEL_STATUS_POLL_DURATION:-60000}
 - SOURCE_KEY_FIELD_NAMES=database_name,collection_name
 - VALIDATE_UNLOAD_ROW_COUNT_FOR_STATUS=$
{VALIDATE_UNLOAD_ROW_COUNT_FOR_STATUS:-false}
 - VALIDATE_MASKED_ROW_COUNT_FOR_STATUS=$
{VALIDATE_MASKED_ROW_COUNT_FOR_STATUS:-false}
 - VALIDATE_LOAD_ROW_COUNT_FOR_STATUS=$
{VALIDATE_LOAD_ROW_COUNT_FOR_STATUS:-false}
 - DISPLAY_BYTES_INFO_IN_STATUS=${DISPLAY_BYTES_INFO_IN_STATUS:-true}
 - DISPLAY_ROW_COUNT_IN_STATUS=${DISPLAY_ROW_COUNT_IN_STATUS:-false}

 unload-service:
 build:
 context: unload-service
 args:
 - VERSION=${VERSION}

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 84

 image: delphix-mongo-unload-service-app:${VERSION}
 init: true
 environment:
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=${LOG_LEVEL_UNLOAD_SERVICE:-INFO}
 - UNLOAD_FETCH_ROWS=${UNLOAD_FETCH_ROWS:-10000}
 - CONCURRENT_EXPORT_LIMIT=${CONCURRENT_EXPORT_LIMIT:-10}
 - HIKARI_MAX_LIFE_TIME=${UNLOAD_HIKARI_MAX_LIFE_TIME:-1800000}
 - HIKARI_KEEP_ALIVE_TIME=${UNLOAD_HIKARI_KEEP_ALIVE_TIME:-300000}
 - FILE_DELIMITER=${FILE_DELIMITER:-,}
 - FILE_ENCLOSURE=${FILE_ENCLOSURE:-"}
 - FILE_ESCAPE_ENCLOSURE=${FILE_ESCAPE_ENCLOSURE:-"}

 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-unload-data:/data
 # The orchestrator VM paths(left side of colon) used here are examples.
Configure the respective mount paths.
 - /mnt/hyperscale:/etc/hyperscale
 - /home/hyperscale_user/logs/unload_service:/opt/delphix/logs

 masking-service:
 build:
 context: masking-service
 args:
 - VERSION=${VERSION}
 image: delphix-masking-service-app:${VERSION}
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-masking-data:/data
 # The orchestrator VM paths(left side of colon) used here are examples.
Configure the respective mount paths.
 - /mnt/hyperscale:/etc/hyperscale
 - /home/hyperscale_user/logs/masking_service:/opt/delphix/logs
 environment:
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=${LOG_LEVEL_MASKING_SERVICE:-INFO}
 - INTELLIGENT_LOADBALANCE_ENABLED=${INTELLIGENT_LOADBALANCE_ENABLED:-true}

load-service:
 build:
 context: load-service
 args:
 - VERSION=${VERSION}
 image: delphix-mongo-load-service-app:${VERSION}
 init: true
 environment:
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=${LOG_LEVEL_LOAD_SERVICE:-INFO}
 - SQLLDR_BLOB_CLOB_CHAR_LENGTH=${SQLLDR_BLOB_CLOB_CHAR_LENGTH:-20000}
 - HIKARI_MAX_LIFE_TIME=${LOAD_HIKARI_MAX_LIFE_TIME:-1800000}

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 85

 - HIKARI_KEEP_ALIVE_TIME=${LOAD_HIKARI_KEEP_ALIVE_TIME:-300000}
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-load-data:/data
 # The orchestrator VM paths(left side of colon) used here are examples.
Configure the respective mount paths.
 - /mnt/hyperscale:/etc/hyperscale
 - /home/hyperscale_user/logs/load_service:/opt/delphix/logs

proxy:
 build: nginx
 image: delphix-hyperscale-masking-proxy:${VERSION}
 init: true
 networks:
 - hyperscale-net
 ports:
 - "443:443"
 - "80:80"
 restart: unless-stopped
 depends_on:
 - controller-service
 #volumes:
 # Uncomment to bind mount /etc/config
 #- /nginx/config/path/on/host:/etc/config
networks:
 hyperscale-net:
volumes:
 hyperscale-load-data:
 hyperscale-unload-data:
 hyperscale-masking-data:
 hyperscale-controller-data:

For Parquet files masking:

A sample file specific to the Parquet connector is available in the package called docker-compose-

parquet-sample.yaml .

version: "3.7"
services:
 controller-service:
 image: delphix-controller-service-app:<HYPERSCALE VERSION>
 healthcheck:
 test: 'curl --fail --silent http://localhost:8080/actuator/health | grep UP ||
exit 1'
 interval: 30s
 timeout: 25s
 retries: 3
 start_period: 30s
 depends_on:
 - unload-service

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 86

 - masking-service
 - load-service
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-controller-data:/data
 # The orchestrator VM paths(left side of colon) used here are examples.
Configure the respective mount paths.
 - /mnt/parent_staging_area:/etc/hyperscale
 environment:
 - API_KEY_CREATE=true
 - EXECUTION_STATUS_POLL_DURATION=120000
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=INFO
 - API_VERSION_COMPATIBILITY_STRICT_CHECK=false
 - LOAD_SERVICE_REQUIREPOSTLOAD=false
 - SKIP_UNLOAD_SPLIT_COUNT_VALIDATION=false
 - SKIP_LOAD_SPLIT_COUNT_VALIDATION=false
 - CANCEL_STATUS_POLL_DURATION=60000
 - SOURCE_KEY_FIELD_NAMES=unique_source_files_identifier
 unload-service:
 image: delphix-parquet-unload-service-app:<HYPERSCALE VERSION>
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-unload-data:/data
 # Staging area volume mount, here /mnt/parent_staging_area is used as an example
 # The orchestrator VM paths(left side of colon) used here are examples.
Configure the respective mount paths.
 - /mnt/parent_staging_area:/etc/hyperscale
 environment:
 - MAX_WORKER_THREADS_PER_JOB=512
 # The default AWS region and credentials can be set using environment variables
 #- AWS_DEFAULT_REGION=us-east-1
 #- AWS_ACCESS_KEY_ID=<aws_access_key_id>
 #- AWS_SECRET_ACCESS_KEY=<aws_secret_access_key>
 masking-service:
 image: delphix-masking-service-app:<HYPERSCALE VERSION>
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-masking-data:/data
 # Staging area volume mount, here /mnt/parent_staging_area is used as an example
 # The orchestrator VM paths(left side of colon) used here are examples.
Configure the respective mount paths.
 - /mnt/parent_staging_area:/etc/hyperscale
 environment:
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=INFO

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 87

•

•

 - INTELLIGENT_LOADBALANCE_ENABLED=true
 load-service:
 image: delphix-parquet-load-service-app:<HYPERSCALE VERSION>
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-load-data:/data
 # Staging area volume mount, here /mnt/parent_staging_area is used as an example
 # The orchestrator VM paths(left side of colon) used here are examples.
Configure the respective mount paths.
 - /mnt/parent_staging_area:/etc/hyperscale
 #environment:
 # The default AWS region and credentials can be set using environment variables
 #- AWS_DEFAULT_REGION=us-east-1
 #- AWS_ACCESS_KEY_ID=<aws_access_key_id>
 #- AWS_SECRET_ACCESS_KEY=<aws_secret_access_key>
 proxy:
 image: delphix-hyperscale-masking-proxy:<HYPERSCALE VERSION>
 init: true
 networks:
 - hyperscale-net
 ports:
 - "443:443"
 - "80:80"
 restart: unless-stopped
 depends_on:
 - controller-service
networks:
 hyperscale-net:
volumes:
 hyperscale-load-data:
 hyperscale-unload-data:
 hyperscale-masking-data:
 hyperscale-controller-data

5. (OPTIONAL) To modify the default Hyperscale configuration properties for the application, see Configuration
Settings.

6. Run the application from the same location where you extracted the docker-compose.yaml file.

docker-compose up -d

Run the following command to check if the application is running. The output of this command should
shows five containers up and running.

docker-compose ps

Run the following command to access application logs of a given container.

docker logs -f service_container_name>

https://portal.document360.io/continuous-compliance/docs/configuration-settings-5

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 88

• Run the following command to stop the application (if required).

sudo docker-compose down

7. Once the application starts, an API key will be generated that will be required to authenticate with the Hyperscale
Compliance Orchestrator. This key will be found in the docker container logs of the controller service. You can
either look for the key from the controller service logs location that was set as a volume binding in the docker-

compose.yaml file or you could use the following 'docker' command to retrieve the logs.

docker logs -f <service_container_name>

The above command displays an output similar to the following where the string NEWLY GENERATED API

KEY can be grepped from the log::

2022-05-18 12:24:10.981 INFO 7 --- [main] o.a.c.c.C.[Tomcat].[localhost].
[/] : Initializing Spring embedded WebApplicationContext
2022-05-18 12:24:10.982 INFO 7 --- [main]
w.s.c.ServletWebServerApplicationContext : Root WebApplicationContext: initialization
completed in 9699 ms
NEWLY GENERATED API KEY: 1.89lPH1dHSJQwHuQvzawD99sf4SpBPXJADUmJS8v00VCF4V7rjtRFAftGWy
gFfsqM

To authenticate with the Hyperscale Compliance Orchestrator, you must use the API key and include the HTTP
Authorization request header with the type apk; apk <API Key> .

For more information, see the Authentication section under Accessing the Hyperscale Compliance API.

Continuous Compliance Engine Installation

Delphix Continuous Compliance Engine is a multi-user, browser-based web application that provides complete,
secure, and scalable software for your sensitive data discovery, masking, and tokenization needs while meeting
enterprise-class infrastructure requirements. For information about installing the Continuous Compliance Engine,
see Continuous Compliance Engine Installation documentation.

Service container name can be accessed by output of the command docker-compose ps .

Service container name can be accessed by output of the command docker-compose ps .

https://portal.document360.io/continuous-compliance/docs/first-time-setup

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 89

Custom configuration
Docker Compose should only be used to deploy Hyperscale Compliance in an evaluation/testing capacity.

Introduction

This topic provides background information on performing custom configurations that are referenced throughout
Hyperscale Compliance documentation.

Bind mounts

Configuration of Hyperscale Compliance is achieved through a combination of Configuration Settings and the use
of Docker bind mounts. A bind mount is a directory or file on the host machine that will be mounted inside the
container. Changes made to the files on the host machine will be reflected inside the container. It does not matter
where the files live on the host machine, but the files must be mounted to specific locations inside the container so
that the application can find them.

The Hyperscale Compliance and proxy containers can both be configured via separate bind-mounted directories.
Each container requires all configuration files to be mounted to the relevant directory inside the container.
Therefore, it is recommended to create a directory for each container on the host machine to store all of the
configuration files and mount them to the relevant directory. This is done by editing the docker-

compose.yaml .

Like, Under proxy services, add a volumes section if one does not already exist; this is used to mount the
configuration directory on the host to /etc/config . For example, if /my/proxy/config is the directory on
the host that contains the configuration files, then the relevant part of the compose file would look like this:

services:
 proxy:
 volumes:
 - /my/proxy/config:/etc/config

To change the configuration of the Hyperscale Compliance container, make a similar change under its service
section, the only difference being the directory on the host. After making this change, the application will need to
be stopped and restarted.

The structure of /my/proxy/config will need to match the required layout in /etc/config . When each
container starts, it will create default versions of each file and place them in the expected location. It is highly
recommended to start from the default version of these files. For example, if /my/proxy/config is the bind
mount directory on the host, it could be populated with all the default configuration files by running the following
commands.

First, create an nginx directory inside /my/proxy/config on the host.

cd /my/proxy/config
mkdir nginx

Find the id of the proxy container with docker ps. Look for the container with a delphix-hyperscale-masking-
proxy image name. To determine the user and group ownership for any configuration files, start the containers and

https://docs.docker.com/storage/bind-mounts/

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 90

open a shell to the relevant one (nginx in this example), then examine the current user/group IDs associated with
the files (where x.0.0 should be changed to the version of Hyperscale Compliance being installed).

docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
802606779b9d delphix-hyperscale-masking-proxy:dev "/sbin/tini -- /boot…" 3
 hours ago Up 3 hours 0.0.0.0:80->80/tcp, :::80->80/tcp, 0.0.0.0:443->4
43/tcp, :::443->443/tcp
hyperscale-masking_proxy_1

In the above example, 802606779b9d is the id. Run the following command to copy the default files to the bind
mount.

docker cp <container id>:/etc/config/nginx /my/proxy/config/nginx

One can always go back to the original configuration by removing the bind-mount and restarting the container or
using docker cp as in the previous example to overwrite the custom files with the default versions.

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 91

1.

2.

3.

4.

5.

•

•

•

6.
7.

Upgrading the Hyperscale Compliance Orchestrator (Docker Compose)

Pre-requisite

Before upgrading, ensure you have downloaded the Hyperscale Compliance x.0.0 ((where x.0.0 should be
changed to the version of Hyperscale being installed) tar bundle from the Delphix Download website.

How to upgrade the Hyperscale Compliance Orchestrator

Perform the following steps to upgrade the Hyperscale Compliance Orchestrator to the 17.0.0 version:

Run cd /<hyperscale_installation_path>/ and docker-compose down to stop and
remove all the running containers.
Run the below commands to delete all existing dangling images and hyperscale images:

docker rmi $(docker images -f "dangling=true" -q)
docker rmi $(docker images "delphix-hyperscale-masking-proxy" -q)
docker rmi $(docker images "delphix-controller-service-app" -q)
docker rmi $(docker images "delphix-masking-service-app" -q)
docker rmi $(docker images "delphix-*load-service-app" -q)

Remove all files or folders from existing installation directories, except docker-compose.yaml (Keep
its backup outside the installation directory so it is not overridden while executing the next step).
Take backup of .env file and untar the patch tar in your existing installation path (where x.0.0 should be

changed to the version of Hyperscale being installed). tar -xzvf delphix-hyperscale-masking-

x.0.0.tar.gz -C <existing_installation_path>

Replace the docker-compose.yaml supplied with the bundle file as per the following:

For users upgrading from 3.0.0.x: Use the connector-specific docker-compose-sample.yaml

file(e.g. docker-compose-oracle.yaml or docker-compose-mssql.yaml) supplied
with the bundle and add the same ‘volumes’ and/or any other properties (if configured) for each
container referencing the backed-up docker-compose.yaml from step 3.

For users upgrading from 4.0.0.0 and above: Replace the docker-compose.yaml file supplied

with the bundle with the docker-compose.yaml file that you created as a backup at step 3.
Similar to other services, make sure to add the volume binding for the staging area path under
controller-service as well. For example,

- /mnt/hyperscale:/etc/hyperscale

Apply the backed up .env file and set the VERSION property as 18.0.0 (i.e. VERSION=18.0.0).
Run the below commands to load the images(will configure Oracle-based unload/load setup):

docker load --input controller-service.tar
docker load --input unload-service.tar
docker load --input masking-service.tar
docker load --input load-service.tar

https://download.delphix.com/folder/2224/Delphix%20Product%20Releases/Hyperscale%20Compliance

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 92

•

•

•

•

8.
9.

docker load --input proxy.tar

If upgrading from an MSSQL connector setup(supported starting 5.0.0.0 release), instead of running
the above commands for load/unload services setup(which are for Oracle), run the below
commands(rest remains same for the controller, masking, and proxy services):

docker load --input mssql-unload-service.tar
docker load --input mssql-load-service.tar

If upgrading from a Delimited Files connector setup (supported starting 12.0.0 release), instead of
running the above commands for load/unload services setup(which are for Oracle), run the below
commands(rest remains same for the controller, masking, and proxy services):

docker load --input delimited-unload-service.tar
docker load --input delimited-load-service.tar

If upgrading from a MongoDB connector setup (supported starting 13.0.0 release), instead of running
the above commands for load/unload services setup (which are for Oracle), run the below commands
(rest remains same for the controller, masking, and proxy services):

docker load --input mongodb-unload-service.tar
docker load --input mongodb-load-service.tar

If upgrading from a Parquet connector setup (supported starting 17.0.0 release), instead of running
the above commands for load/unload services setup (which are for Oracle), run the below commands
(rest remains same for the controller, masking, and proxy services):

docker load --input parquet-unload-service.tar
docker load --input parquet-load-service.tar

Run docker-compose up -d to create containers.
Ensure all your mount(s) are configured and accessible, before running a job.

Existing data remains intact after the degradation.

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 93

•
•

•

How to generate a support bundle (Docker compose)

1. Find the “generate_support_bundle.sh” script

Login to Hyperscale VM for which you want to generate the support bundle.
generate_support_bundle.sh” file is bundled with the release tar file. You can find this script under tools/

support-scripts folder, (present under the directory, where you will untar the release tar file on

Hyperscale Engine). For example, /path_to_untarred_hyperscale_product/tools/support-

scripts .

Example:

dlpxuser@delphix:~/test$ cd tools/support-scripts/
dlpxuser@delphix:~/test$ ls -ltr
total 48
-rwxr-xr-x 1 delphix staff 823 Jul 7 09:55 generate_support_bundle.sh
-rwxr-xr-x 1 delphix staff 463 Jul 7 09:55 container_information.sh
-rwxr-xr-x 1 delphix staff 5597 Jul 7 09:55 collect_container_support_info.sh
-rw-r--r-- 1 delphix staff 5316 Jul 7 09:55 README.md

2. Modify the “container_information.sh” script parameters

Change the mount_path and docker_compose_file_path accordingly.

Example:

mount_path=/home/delphix/hyperscale
docker_compose_file_path=/home/delphix/docker-compose.yaml

3. Execute the “generate_support_bundle.sh” script

Execute the “generate_support_bundle.sh” script from tools/support-scripts/ folder.

Example:

dlpxuser@delphix:~/test/tools/support-scripts/$./generate_support_bundle.sh
....
Generating support bundle tar file...

If it is not already installed, you must install bash shell and yq to generate a Hyperscale support bundle.
For more information on downloading yq, refer to the yq Downloads page on GitHub.



•

•

mount_path: Absolute path configured for mount directory in docker-compose file which is

mapped to /etc/hyperscale .

docker_compose_file_path: Absolute path for docker_compose.yaml file.



https://github.com/mikefarah/yq/#wf_ssl_install

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 94

•

•
•
•
•
•

•
•

....

Enter the “Password” when prompted.

4. Find the Generated Support Bundle Tar File

The resulting support bundle will be located at /etc/hyperscale/hyperscale-support-

****.tar.gz inside the container. This means the tar file is generated under the path which is mapped to

/etc/hyperscale in docker-compose file and is directly accessible from Hyperscale VM.

Example:

dlpxuser@delphix:~/test$ ls -ltr ../hyperscale/
total 316
drwxrwxrwx 5 1004 1005 4096 Feb 9 10:14 aks-mount
-rw-r--r-- 1 65436 staff 104189 Feb 17 08:52 hyperscale-support-
<current_timestamp>.tar.gz

The support bundle tar file contains the following information:

Hyperscale Logs
The output of mpstat for CPU utilization info.
The output of proc/meminfo for memory info.
The output of proc/cpuinfo for cpu info.
Files to show the memory limit for the application container and the max usage of the app container in
bytes.
Redacted database file to restore the Hyperscale VM
Docker compose file

•

•
•

•

The script generate_support_bundle.sh generates a bare-bones support bundle from a Hyperscale
engine running in docker.
Execute the generate_support_bundle.sh from the untar location.
The resulting support bundle will be at /etc/hyperscale/hyperscale-support-

****.tar.gz inside the container. This means the tar file is generated under a path that is

mapped to /etc/hyperscale in docker-compose file and is directly accessible from Hyperscale
VM.
The user should have privileges or permission to execute the docker command in order to generate
the support bundle.



Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 95

1.

2.

3.

Managing the storage space
There are two storage locations where the continuous increase in disk space consumption can lead to a depletion
of the available disk space on the Hyperscale host system.

1. Overlay2 File System

The /var/lib/docker/overlay2 directory stores several file system layers for images and containers, and it
may also accumulate data related to unused containers and images.

To prevent excessive disk space usage caused by the Overlay2 File System, it's essential to follow the Hyperscale
upgrade steps, including the deletion of dangling images as specified. If this storage becomes full, run the below
command:
docker rmi $(docker images -f "dangling=true" -q)

2. Container Logs

Docker maintains logs printed on the console by each service in JSON format within the /var/lib/docker/

containers directory (because the default driver is json-file). These logs keep appending to these files. If this
storage becomes full, perform the below steps:

Create a daemon.json file under /etc/docker directory (For more information, refer to https://
docs.docker.com/config/containers/logging/local/#usage%5D & Configure logging driver). The below
example describes the sample content of the file.

{
 "log-driver": "json-file",
 "log-opts": {
 "max-size": "2g",
 "max-file": "3"
 }
}

Reload & restart the docker service.

sudo systemctl daemon-reload
sudo systemctl restart docker

Stop all currently running docker services & then restart these again. Execute the below commands from the
HS directory.

docker-compose down
docker-compose up -d

https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/config/containers/logging/local/#usage%5D
https://docs.docker.com/config/containers/logging/configure/#configure-the-default-logging-driver

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 96

Migrating to Kubernetes
1. Copy docker-compose services data to local storage

Stop Hyperscale services so that all of the product's state is flushed to persistent storage. You must run the below
command from the same directory where the docker-compose.yaml file exists.

docker-compose stop

Create folders for data backup of all services.

mkdir container_data
cd container_data/
mkdir controller
mkdir unload
mkdir masking
mkdir load
mkdir proxy
cd ../

Copy the SQLite database file and encryption key Docker volume folder data on a local machine in the created
folder.

docker ps -a // list out the name of containers

docker cp <controller-service-container-name>:/data ./container_data/controller/
docker cp <unload-service-container-name>:/data ./container_data/unload/
docker cp <load-service-container-name>:/data ./container_data/load/
docker cp <masking-service-container-name>:/data ./container_data/masking/

eg: docker cp hyperscale-masking_controller-service_1:/data ./container_data/
controller/

Copy the SSL certificates Docker volume folder data on a local machine in the created folder (This step is only
required if custom certificates are used).

docker cp <proxy-container-name>:/etc/config/nginx/ssl ./container_data/proxy

All the container_data files should be as below.

├── controller
│ └── data
│ └── db.sqlite
├── load
│ └── data
│ ├── db.sqlite
│ └── encryption.key
├── masking

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 97

│ └── data
│ ├── db.sqlite
│ └── encryption.key
├── proxy
│ └── ssl
│ ├── dhparam.pem
│ ├── nginx.crt
│ ├── nginx.key
│ └── ssl.conf
└── unload
 └── data
 ├── db.sqlite
 └── encryption.key

Grant permission 770 to all files.

chmod 770 -R .

2. Restore docker-compose services data to Hyperscale deployed on the Kubernetes setup (in Persistent
Volume)

Install the required version of the Hyperscale Compliance Engine using Kubernetes. For more information about the
installation steps, refer to thehttps://hyperscalemasking.delphix.com/docs/latest/installation-and-setup-
kubernetes section.

List the pods name for further reference:

kubectl get pods -n hyperscale-services

Restore Hyperscale docker-compose version volume data with Hyperscale deployed on the Kubernetes setup (in
Persistent Volume).

Execute the below process for all the pods names except the proxy pod to copy each service data.

cd container_data/<service- folder-name>
kubectl cp data hyperscale-services/<service-pod-name>:/

eg:
cd container_data/masking
kubectl cp data hyperscale-services/masking-service-7788ccbbbb-lnzhv:/

3. List out deployment names and restart all the services using kubectl rollout.

kubectl get deployments -n hyperscale-services
kubectl rollout restart deployment <controller-service-deployment-name> -n
hyperscale-services
eg: kubectl rollout restart deployment controller-service -n hyperscale-services

Please note that docker-compose log files will not be migrated so keep the backup, of log files before
starting the migration process.

https://hyperscalemasking.delphix.com/docs/latest/installation-and-setup-kubernetes

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 98

4. Update the SSL certificates (This step is only required if custom certificates are used).

Go to container_data/proxy/ssl folder and get the base64 value of nginx.crt , nginx.key, and

dhparam.pem . For example:

cat nginx.crt | base64 | awk '{print}' ORS='' | awk '{print}'

Now update the base64 value of each in k8 values.yaml file.

5. Update the other user-configurable properties from docker-compose .env file to values.yaml accordingly

All the available configurations can be found at https://hyperscalemasking.delphix.com/docs/latest/configuration-
settings , the configuration migration is divided into two steps:

Modify existing configuration for any service:

Go to the hyperscale-helm chart directory. Under the templates folder, locate the corresponding

<service-name>-deployment.yaml file. For more details, refer to the below screenshot.

Open the corresponding <service-name>-deployment.yaml file for which you want to modify the new
configuration.

https://hyperscalemasking.delphix.com/docs/latest/configuration-settings

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 99

Example: Let’s suppose you want to change the config value for API_KEY_CREATE in controller-

deployment.yaml file. As you can see that API_KEY_CREATE config value is mapped with

Values.controller.apiKeyCreate .

Now under the hyperscale-helm chart directory, open the values.yaml file and search for

apiKeyCreate property of controller attribute and change the corresponding value.

Add a new configuration for any service

In case the configuration name doesn’t exist in <service-name>-deployment.yaml file, add your

configuration as part of env in <service-name>-deployment.yaml file and also define config with the same

name in values.yaml corresponding to the service environment as explained above, to get the values from

values.yaml file.

Apply helm upgrade to reflect the new values.yaml file changes.

helm upgrade hyperscale-helm -f hyperscale-helm/values.yaml hyperscale-helm

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 100

Your docker-compose Hyperscale VM is now fully migrated to Kubernetes Hyperscale VM. Check the k8 running
pods, like below:

delphix@hyperscale-k8s:~/_database$ kubectl get pods -n hyperscale-services
NAME READY STATUS RESTARTS AGE
masking-service-7788ccbbbb-lnzhv 1/1 Running 0 4h28m
unload-service-5f9946556f-4qg7l 1/1 Running 0 4h28m
proxy-767d6ccbdd-2vdhv 1/1 Running 0 4h28m
load-service-5bb994dbbf-c85mz 1/1 Running 0 3h43m
controller-service-6c6df56bbd-blng6 1/1 Running 0 62m

If apiKeyCreate property is defined as true in values.yaml , then you can get the API-Key as below to

access the API. In case, apiKeyCreate property is defined as false then you can use your existing API-Key.

kubectl logs <controller-pod-name> -n hyperscale-services | grep 'NEWLY GENERATED API
KEY' | sed 's/^.*: //'

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 101

•
•
•
•
•
•
•
•

Kubernetes
This section covers the following topics:

Host requirements (Kubernetes)
Docker image registry and names for Hyperscale services
Installation and Setup (Kubernetes)
Bootstrapping API keys (Kubernetes)
Hyperscale logs (Kubernetes)
Limitations (Kubernetes)
Upgrading the Hyperscale Compliance orchestrator (Kubernetes)
How to generate a support bundle (Kubernetes)

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 102

•
•

•

•

Host requirements (Kubernetes)

Type Host Requirement Explanation

User A user (example: hyperscale_os) with the
following permissions is required:

Permission to run helm commands
Permission to run kubectl commands

These permissions are required to be able
to install helm charts and manage the
Kubernetes resources.

NFS Client
Services

NFS client services must be enabled on the host. NFS client service is required to be able to
mount an NFS shared storage from where
the Hyperscale Compliance Orchestrator
will be able to read the source files and
write the target files. For more information,
see NFS Server Installation.

Staging
area
directory
permission
s

The ‘staging_area’ directory, along with the
directory(hyperscale) one level above,
require the following permissions, based on the
UID/GID of the OS user so that the Hyperscale
Compliance Orchestrator and the Continuous
Compliance Engine(s) can perform read/write/
execute operations on the staging area:

If the Hyperscale Compliance OS user has a
UID of 65436, then the ‘staging_area’
directory, along with the
directory(hyperscale) one level above,
must have a UID of 65436 and 700
permission mode.
If the Hyperscale Compliance OS user has a
GID of 50 and does not have a UID of 65436,
then the ‘staging_area’ directory, along
with the directory(hyperscale) one
level above, must have a GID of 50 and 770
permission mode.

These permissions on the staging area
directory are required for the Hyperscale
Compliance containers and the continuous
compliance engines to be able to read/
write into the staging area.

Installation
Directory

A directory to download and manage helm charts.

Hardware
Requireme
nts

Minimum:

8 vCPU, 64 GB of memory, 50GB OS disk.

Recommended:

16 vCPU, 128GB of memory, 50GB OS disk.

http://delphixdocs.atlassian.net/hyperscale-compliance-9-0-0/docs/nfs-server-installation-3

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 103

1.
2.

Docker image registry and names for Hyperscale services
The docker images for Hyperscale Compliance services fall under two categories of services:

Common Services: A set of service images common across deployments with varying unload/load services.
Unload and Load Services: A set of unload and load service images specific to a dataset vendor.

All images are stored under the hyperscale.download.delphix.com/delphix-hyperscale registry. Also, any image will
have a name of the form <image-name>-[VERSION] where [VERSION] corresponds to a particular release
version.

The following list provides the image URLs for the docker images in the two categories of services:

Common Services

hyperscale.download.delphix.com/delphix-hyperscale:proxy-[VERSION]
hyperscale.download.delphix.com/delphix-hyperscale:controller-service-[VERSION]
hyperscale.download.delphix.com/delphix-hyperscale:masking-service-[VERSION]

Unload and Load Services

Oracle Unload and Load

hyperscale.download.delphix.com/delphix-hyperscale:oracle-unload-service-[VERSION]
hyperscale.download.delphix.com/delphix-hyperscale:oracle-load-service-[VERSION]

MSSQL Unload and Load:

hyperscale.download.delphix.com/delphix-hyperscale:mssql-unload-service-[VERSION]
hyperscale.download.delphix.com/delphix-hyperscale:mssql-load-service-[VERSION]

Delimited Unload and Load:

hyperscale.download.delphix.com/delphix-hyperscale:delimited-unload-service-[VERSION]
hyperscale.download.delphix.com/delphix-hyperscale:delimited-load-service-[VERSION]

Mongo Unload and Load:

hyperscale.download.delphix.com/delphix-hyperscale:mongo-unload-service-[VERSION]
hyperscale.download.delphix.com/delphix-hyperscale:mongo-load-service-[VERSION]

http://hyperscale.download.delphix.com/delphix-hyperscale

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 104

Parquet Unload and Load:

hyperscale.download.delphix.com/delphix-hyperscale:parquet-unload-service-[VERSION]
hyperscale.download.delphix.com/delphix-hyperscale:parquet-load-service-[VERSION]

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 105

Installation and Setup (Kubernetes)

Installation Requirements

To deploy Hyperscale Compliance via Kubernetes, a running Kubernetes cluster is required to run, the kubectl c
ommand line tool to interact with the Kubernetes cluster and HELM for deployment onto the cluster.

Requirem
ent

Recommended
Version

Comments

Kubernete
s Cluster

1.25 or above

HELM 3.9.0 or above HELM installation should support HELM v3. More information on HELM can be
found at https://helm.sh/docs/ . To install HELM, follow the

installation instructions at https://helm.sh/docs/intro/

install/ .

The installation also requires access to the HELM repository from where
Hyperscale charts can be downloaded. The HELM repository URL is
https://dlpx-helm-hyperscale.s3.amazonaws.com .

kubectl 1.25.0 or above

Installation

Download the HELM charts

The latest version of the chart can be pulled locally with the following command (where x.0.0 should be
changed to the version of Hyperscale being installed):

curl -XGET https://dlpx-helm-hyperscale.s3.amazonaws.com/hyperscale-helm-

x.0.0.tgz -o hyperscale-helm-x.0.0.tgz

This command will download a file with the name hyperscale-helm-x.0.0.tgz in the current working

directory. The downloaded file can be extracted using the following command (where x.0.0 should be changed
to the version of Hyperscale being installed):

tar -xvf hyperscale-helm-x.0.0.tgz

This will extract into the following directory structure:

If an intermediate HELM repository is to be used instead of the default Delphix HELM repository, then the
repository URL, username, and password to access this repository needs to be configured in the
values.yaml file under the imageCredentials section.



Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 106

1.

2.

hyperscale-helm
 |- values.yaml
 |- README.md
 |- Chart.yaml
 |- templates
 |-<all templates files>

Verify the authenticity of the downloaded HELM charts

The SHA-256 hash sum of the downloaded helm chart tarball file can be verified as follows:

Execute the below command and note the digest value for version x.0.0 (where x.0.0 should be changed
to the version of Hyperscale being installed)
curl https://dlpx-helm-hyperscale.s3.amazonaws.com/index.yaml

Execute the sha256sum command (or equivalent) on the downloaded file (where x.0.0 should be
changed to the version of Hyperscale being installed) (hyperscale-helm-x.0.0.tgz)
sha256sum hyperscale-helm-x.0.0.tgz

The value generated by the sha256sum utility in step 2 must match the digest value noted in step 1.

Configure Registry Credentials for Docker Images

For pulling the Docker images from the registry, permanent credentials associated with your Delphix account would
need to be configured in the values.yaml file. To get these permanent credentials, visit the Hyperscale
Compliance Download page and log in with your credentials. Once logged in, select the Hyperscale HELM
Repository link and accept the Terms and Conditions. Once accepted, credentials for the docker image registry will
be presented. Note them down and edit the imageCredentials.username and

imageCredentials.password properties in the values.yaml file as shown below:

Credentials to fetch Docker images from Delphix internal repository
 imageCredentials:
Username to login to docker registry
 username: <username>
Password to login to docker registry
 password: <password>

imageCredentials:
username: <username>
password: <password>

Override Default Values in values.yaml

hyperscale-helm is the name of the folder which was extracted in the previous step. In the above directory

structure, the values.yaml file contains all of the configurable properties with their default values. These

Delphix will delete unused credentials after 30 days and inactive (but previously used) credentials after 90
days.

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 107

1.

2.

1.

2.

1.

2.

1.

2.

default values can be overridden while deploying Hyperscale Compliance, as per the requirements. If the
values.yaml file needs to be overridden, create a copy of values.yaml and edit the required properties.

While deploying Hyperscale Compliance, values.yaml file can be overridden using either of the following
commands:

helm install hyperscale-helm -f <path to edited values.yaml> <directory path of the
extracted chart>
helm install hyperscale-helm <directory path of the extracted chart> --set
<property1>=<value1> --set <property2>=<value2>

Configure Helm chart properties of importance

A few commonly used properties for each service (controller, masking, unload and load) with their default values
are listed in values.yaml . You may find details of these properties on the Configuration Settings page. The
following sections talk about some of the important properties that will need to be configured correctly for a
successful deployment.

Configure the staging area

By default, a path(/dlpxdata) local to the Kubernetes cluster node will be used, via persistent volume claims, to
mount the staging area path inside the pods. Override the path by setting up the desired local storage path with the
localStoragePath property.

If the cluster needs to mount an NFS shared path that will act as the staging area, override the nfsStorageHost and
nfsStorageExportPath properties.

Configure the correct unload/load images for your dataset type

By default, the helm installation will create the Kubernetes pods for the Oracle unload and load services. To have
helm create unload and load pods for the other connector types, for example, MSSQL unload and load services,
override the following values in the values.yaml file:

unload.imageName=mssql-unload-service

load.imageName=mssql-load-service

For Delimited File connector, change the following in values.yaml file:

unload.imageName=delimited-unload-service

load.imageName=delimited-load-service

For MongoDB Database connector, change the following in values.yaml

unload.imageName=mongo-unload-service

load.imageName=mongo-load-service

For the Parquet connector, change the following in values.yaml file:

unload.imageName=parquet-unload-service

load.imageName=parquet-load-service

http://delphixdocs.atlassian.net/hyperscale-compliance-9-0-0/docs/configuration-settings-7
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 108

•
•

•

•

•

•

•

•

•
•

•

•

•

For more information about the docker image names and their URLs, refer to Docker image registry and names for
Hyperscale services.

Configure controller-service environment variables for the MongoDB Database Connector (Applicable only for the
MongoDB Database masking)

Change the following in values.yaml :
controller:

controller.loadServiceRequirepostload=false

controller.SourceKeyFieldNames=database_name,collection_name

controller.validateUnloadRowCountForStatus: false

controller.validateMaskedRowCountForStatus: false

controller.validateLoadRowCountForStatus: false

controller.displayBytesInfoInStatus: true

controller.displayRowCountInStatus: false
unload:

unload.concurrentExportLimit: 10

Navigate to hyperscale-helm/templates/controller-deployment.yaml and uncomment
lines:

spec:
 ...
 template:
 ...
 containers:
 - env:
 ...
 - name: SOURCE_KEY_FIELD_NAMES
 value: {{ .Values.controller.sourceKeyFieldNames | quote }}
 - name: VALIDATE_UNLOAD_ROW_COUNT_FOR_STATUS
 value: {{ .Values.controller.validateUnloadRowCountForStatus |
quote }}
 - name: VALIDATE_MASKED_ROW_COUNT_FOR_STATUS
 value: {{ .Values.controller.validateMaskedRowCountForStatus |
quote }}
 - name: VALIDATE_LOAD_ROW_COUNT_FOR_STATUS
 value: {{ .Values.controller.validateLoadRowCountForStatus |
quote }}
 - name: DISPLAY_BYTES_INFO_IN_STATUS
 value: {{ .Values.controller.displayBytesInfoInStatus | quote }}
 - name: DISPLAY_ROW_COUNT_IN_STATUS
 value: {{ .Values.controller.displayRowCountInStatus | quote }}

Navigate to hyperscale-helm/templates/unload-deployment.yaml and uncomment lines:

spec:
 ...

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 109

1.
2.
3.
4.
5.

 template:
 ...
 containers:
 - env:
 ...
- name: CONCURRENT_EXPORT_LIMIT
 value: {{ .Values.unload.concurrentExportLimit | quote }}

Configure the instantclient path(Applicable for Oracle unload/load):

By default, a path(/dlpxdata) local to the Kubernetes cluster node will be used, via persistent volume claims, to
mount the Oracle instantclient path inside the pods. Override the path by setting up the desired instantclient path
with the instantClientStoragePath and instantClientRootDirName properties.

If the cluster needs to mount an NFS shared path that will contain the instantclient binaries, override the
nfsInstantClientHost and nfsInstantClientExportPath properties.

Service level properties:

Configuring the Ingress Controller

Assuming an ingress controller configuration on the Kubernetes cluster is present when accessing Hyperscale
Compliance after the deployment, the ingress controller rule needs to be added for proxy service, along with port
443 (if SSL is enabled) and port 80 (if SSL is disabled).

Additionally, the following annotations will need to be set(this assumes that Kubernetes Ingress NGINX Controller is
being used):

nginx.ingress.kubernetes.io/backend-protocol=HTTPS
nginx.ingress.kubernetes.io/proxy-body-size=50m
nginx.ingress.kubernetes.io/proxy-connect-timeout=600
nginx.ingress.kubernetes.io/proxy-read-timeout=600
nginx.ingress.kubernetes.io/proxy-send-timeout=600

If an ingress controller has not been assigned, then a new ingress resource, with the above requirements, can be
created with the following kubectl command:

kubectl create ingress https-ingress --namespace=<namespace-name> --rule="/
*=proxy:443" --annotation=nginx.ingress.kubernetes.io/backend-protocol=HTTPS --
annotation=nginx.ingress.kubernetes.io/proxy-body-size=50m --
annotation=nginx.ingress.kubernetes.io/proxy-connect-timeout=600 --
annotation=nginx.ingress.kubernetes.io/proxy-read-timeout=600 --
annotation=nginx.ingress.kubernetes.io/proxy-send-timeout=600

•

•

•

HELM will internally refer to the kubeconfig file to connect to the Kubernetes cluster. The default
kubeconfig file is present at location: ~/.kube/config .
If the kubeconfig file needs to be overridden while running HELM commands, set the KUBECONFIG
environment variable to the location of the kubeconfig file.
Oracle Load doesn’t support Object Identifiers(OIDs).



https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://github.com/kubernetes/ingress-nginx

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 110

Check for the Successful Installation

After installing the helm chart and setting up the ingress controller, check the status of the helm chart and the pods
using the following commands:

$ helm list
NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
hyperscale-helm default 1 2023-04-17 05:38:17.639357049 +0000 UTC
deployed hyperscale-helm-18.0.0

$ kubectl get pods --namespace=hyperscale-services

NAME READY STATUS RESTARTS AGE

controller-service-65575b6458-2q9b4 1/1 Running 0 125m

load-service-5c644b9cc8-g9fs8 1/1 Running 0 125m

masking-service-7ddfd49c8f-5j2q5 1/1 Running 0 125m

proxy-5bd8d8f589-gkx8g 1/1 Running 0 125m

unload-service-55b5bd8cc8-7z95b 1/1 Running 0 125m

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 111

Bootstrapping API keys (Kubernetes)
Once the application starts, an API key will be generated that will be required to authenticate with the Hyperscale
Compliance Orchestrator. This key will be found in the logs of the controller service pod. You can use the following
command to get the API key:

kubectl logs <controll_service_pod_name> -n <namespace> | grep 'NEWLY GENERATED

API KEY'

The above command displays an output similar to the following:

NEWLY GENERATED API KEY:

1.bTYUvuzXgnhS8U7WwYZKyF27egO1B73pJUxyw2fHAxhgVLweMIfB6LOisfA3ZGNI

To authenticate with the Hyperscale Compliance Orchestrator, you must use the API key and include the HTTP
Authorization request header with type apk; apk <API Key> ;.

For more information, see the Authentication section under Accessing the Hyperscale Compliance API.

After acquiring the bootstrap API key, you can create a new API key for your convenience. After generating the new
API key, you should override the apiKeyCreate property in the installed helm chart by running the following
command.

helm upgrade <release_name> <directory path of the extracted chart> --reuse-

values --set apiKeyCreate=false

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 112

Hyperscale logs (Kubernetes)
All Hyperscale Compliance containers log to stdout and stderr so that their logs are processed by Kubernetes. To
view container-level logs running on the Kubernetes cluster, run the following command:

kubectl logs <pod_name> -n <namespace>

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 113

Limitations (Kubernetes)
This release of the Hyperscale Compliance does not support deploying/scaling up the services to multiple nodes in
a Kubernetes cluster. This support will be added in a future release. Currently, Hyperscale Compliance is only
supported on single-node Kubernetes clusters.

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 114

1.

2.

3.

4.

5.

6.

•
•

•

•

•

•

Upgrading the Hyperscale Compliance orchestrator (Kubernetes)
Perform the following steps to upgrade a Hyperscale Compliance Orchestrator (Kubernetes).

Create a new folder called hyperscale-helm-[version] , where [version] is the latest version to
which the platform is being upgraded.
$ mkdir hyperscale-helm-[version]

Download the new version of the chart using the following command in tandem with the newly created
folder. Note: This command will download a file named hyperscale-helm-[version].tgz in the

folder hyperscale-helm-[version] .

$ cd hyperscale-helm-[version]
$ curl -XGET https://dlpx-helm-hyperscale.s3.amazonaws.com/hyperscale-helm-
[version].tgz -o hyperscale-helm-[version].tgz

The downloaded file is then extracted using the following command.
$ tar -xvf hyperscale-helm-[version].tgz

This will extract into the following directory structure.

hyperscale-helm
 |- values.yaml
 |- README.md
 |- Chart.yaml
 |- templates
 |-<all templates files>

Copy the values.yaml file from the previous version parallel to the hyperscale-helm-[version]
folder.
After copying the values.yaml file, there are updates that need to be made to the file under the
imageCredentials section:

Bumping up the version, specified against the tag property, to the desired higher version.
If the credentials configured in your values.yaml have expired, which will be the case if the
credentials were unused for 30 days or were inactive (but previously used) for 90 days, please retrieve
a new set of credentials by visiting the Hyperscale Compliance page on http://

download.delphix.com and selecting the Hyperscale Helm Repository link. Configure your

values.yaml with the new set of credentials.

This password update in values.yaml is only required if the user is using a Delphix-
provided Docker Registry (hyperscale.download.delphix.com/delphix-hyperscale) directly in
the deployment (i.e. values.yaml).
If you are using your internal Docker Registry, you should first pull the next version of the
Docker images from the Delphix-provided registry with the credentials associated with your
Delphix account.
The following are the ‘docker’ commands that can be used to pull Docker images into your
internal Docker Registry:

Docker login command (username and password are your permanent credentials
retrieved from Delphix Download site).

http://download.delphix.com
http://hyperscale.download.delphix.com/delphix-hyperscale
https://download.delphix.com

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 115

•

7.

$ docker login --username [USER] --password [PASSWORD]

Pull Docker images of the Hyperscale Compliance services.

$ docker pull <image-url>

The image URLs for the Hyperscale Compliance services can be referenced from this page of the
documentation.

Run the helm upgrade command.
$ helm upgrade -f values.yaml hyperscale-helm hyperscale-helm

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 116

•
•

How to generate a support bundle (Kubernetes)

1. Find the “generate_support_bundle.sh” script

Login to Hyperscale VM for which you want to generate the support bundle.
generate_support_bundle.sh” file is bundled with the helm package file. You can find this script under the
tools/ directory(present under the directory, where you will untar the helm package tar file). For

example, /path_to_hyperscale_helm/tools/ .

Example:

dlpxuser@delphix:~/test$ cd tools/support-scripts/
dlpxuser@delphix:~/test$ ls -ltr
total 16
-rw-r--r-- 1 delphix staff 1032 May 3 13:09 generate_support_bundle.sh
-rw-r--r-- 1 delphix staff 54 May 3 13:12 values-redact.properties

2. Modify the “values-redact.properties”

The values-redact.properties file contains property values (in values.yaml file) which are
sensitive and should be redacted before adding them to the support bundle. By default, it includes image
repository-related properties. The property name will follow a format
like .<rootProperty>.<childProperty>.<innerChildProperty> .

Example:

.unload.loggingLevelRoot // here we want to redact loggingLevelRoot property of
unload

3. Execute the “generate_support_bundle.sh” script

Execute the “generate_support_bundle.sh” script from hyperscale-helm/tools/ directory.

Example:

delphix@ip-xx-xxx-xxx-xxx:~$./hyperscale-helm/tools/generate_support_bundle.sh
/home/delphix/support/values.yaml created.
.....
Generating support bundle tar file...
.....

If it is not already installed, you must install bash shell and yq to generate a Hyperscale support bundle.
For more information on downloading yq, refer to yq Downloads page on GitHub.



https://github.com/mikefarah/yq/#wf_ssl_install

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 117

•
•

•

•
•
•
•

4. Find the Generated Support Bundle Tar File

The resulting support bundle (hyperscale-support-****.tar.gz) will be located at the same level

where the hyperscale-helm was extracted

Example:

delphix@ip-10-110-254-92:~$ ls
hyperscale-helm hyperscale-helm-9.0.0-6.tgz hyperscale-support-20230502-14-36-36.ta
r.gz

The support bundle tar file contains the following information:

Hyperscale Logs
The output of mpstat for CPU utilization info.

The output of proc/meminfo for memory info.

The output of proc/cpuinfo for CPU info.
Files to show the application container's memory limit and the app container's max usage in bytes.
Redacted database file to restore the Hyperscale VM
Redacted values.yaml file

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 118

•
•
•

Podman compose

This section covers the following topics:

Host requirements (Podman Compose)
Installation and Setup (Podman Compose)
How to Generate a Support Bundle (Podman Compose)

Delphix highly recommends new installations be performed on Kubernetes.

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 119

•

•

•

•

•

•

Host requirements (Podman Compose)

Type Host Requirement Explanation

User A user (hyperscale_os) with the
following permissions are required:

Should have permissions to
install podman and

podman-compose .
Permission to run mount,
unmount, mkdir and rmdir as
a super-user with NOPASSWD.
sudo permission to run sudo

sysctl

net.ipv4.ip_unprivile

ged_port_start=80
Should have either GID=50
and/or UID=65436.

This will be a primary user responsible to
install and operate the Hyperscale
Compliance.

Installation Directory There must be a directory on the
Hyperscale Compliance Orchestrator
host where the Hyperscale
Compliance can be installed.

This is a directory where the Hyperscale
Compliance tar archive file will be placed
and extracted. The extracted artifacts will
include docker images(tar archive files) and
a configuration file(podman-compose.yaml)
that will be used to install the Hyperscale
Compliance.

Log File Directory An optional directory to place log
files.

This directory (can be configured via
podman-compose.yaml configuration file)
will host the runtime/log files of the
Hyperscale Compliance Orchestrator.

NFS Client Services NFS client services must be enabled
on the host.

NFS client service is required to be able to
mount an NFS shared storage from where
the Hyperscale Compliance Orchestrator will
be able to read the source files and write the
target files. For more information, see NFS
Server Installation.

Hardware
Requirements

Minimum:
8 vCPU, 64 GB of memory,
100GB data disk.
Recommended:
16 vCPU, 128GB of memory,
500GB data disk.

OS disk space: 50 GB

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 120

•

•
•

•
•

•

•

•

•

1.

Installation and setup (Podman Compose)

This section describes the steps you must perform to install the Hyperscale Compliance Orchestrator.

Hyperscale Compliance installation

Pre-requisites

Ensure that you meet the following requirements before you install the Hyperscale Compliance Orchestrator.

Download the Hyperscale tar file (delphix-hyperscale-masking-x.0.0.tar.gz) from

download.delphix.com (where x.0.0 should be changed to the version of Hyperscale being installed).
You must create a user that has permission to install Podman and Podman Compose.
Install Podman on VM. The minimum supported podman version is 4.4.1.

Note: By default, the Podman 4.4.1 version is not available for a few debian-based Linux distributions. For
example, you cannot install Podman 4.4.1 on Ubuntu 20.04 and above. The workaround is to use a RHEL
machine to host the hyperscale deployment with Podman.

Install Podman Compose on the VM. The minimum supported podman-compose version is 1.0.6
Check if podman and podman-compose are installed by running the following command:

podman-compose -v The above command displays an output similar to the following:

podman-compose version 1.0.6

podman -v The above command displays an output similar to the following: podman version

4.4.1
Podman can not create containers that bind to ports < 1024 (here). Hyperscale’s proxy container binds port
80, 443. Run following command to enable binding or port : sudo sysctl

net.ipv4.ip_unprivileged_port_start=80
[Only Required for Oracle Load Service] Download and install Linux-based Oracle’s instant client on the
machine where the Hyperscale Compliance Orchestrator will be installed. The client should essentially
include instantclient-basic (Oracle shared libraries) along with instantclient-tools

containing Oracle’s SQL*Loader client. Both the packages instantclient-basic and instantclient-tools
should be unzipped in the same directory. A group ownership id of 50 with a permission mode of 550 or a
user id of 65436 with a permission mode of 500 must be set recursively on the directory where Oracle’s
instant client binaries/libraries will be installed. This is required by the Hyperscale Compliance
Orchestrator to be able to read or execute from the directory.

Procedure

Perform the following procedure to install the Hyperscale Compliance Orchestrator.

Unpack the Hyperscale tar file (where x.0.0 should be changed to the version of Hyperscale being
installed).

Delphix highly recommends new installations be performed on Kubernetes.

Oracle Load doesn’t support Object Identifiers(OIDs).

https://download.delphix.com/folder/2224/Delphix%20Product%20Releases/Hyperscale%20Compliance
https://github.com/containers/podman-compose
https://github.com/containers/podman/blob/main/rootless.md
https://www.oracle.com/database/technologies/instant-client.html

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 121

2.

•

•

•

•

•

•

•

•

•

•

•

•

•

tar -xzf delphix-hyperscale-masking-x.0.0.tar.gz

Upon unpacking, you will find the podman image tar files which are categorized as below:

Universal images common for all connectors.

controller-service.tar

masking-service.tar

proxy.tar

 Oracle (required only for Oracle data source masking)

unload-service.tar

load-service.tar

 MSSQL (required only for MS SQL data source masking)

mssql-unload-service.tar

mssql-load-service.tar

 Delimited Files (required only for Delimited Files masking)

delimited-unload-service.tar

delimited-load-service.tar

 MongoDB (required only for MongoDB database masking)

mongo-unload-service.tar

mongo-load-service.tar

Parquet files (required only for Parquet file masking)

parquet-unload-service.tar

parquet-load-service.tar

Each deployment set consists of 5 images (3 Universal images and 2 images related to each dataset type).
Proceed to load the required images into podman as below:

For Oracle data source masking:

podman load --input unload-service.tar
podman load --input load-service.tar
podman load --input controller-service.tar
podman load --input masking-service.tar
podman load --input proxy.tar

For MS SQL data source masking:

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 122

3.

a.

i.

ii.

b.

podman load --input mssql-unload-service.tar
podman load --input mssql-load-service.tar
podman load --input controller-service.tar
podman load --input masking-service.tar
podman load --input proxy.tar

For Delimited Files masking:

podman load --input delimited-unload-service.tar
podman load --input delimited-load-service.tar
podman load --input controller-service.tar
podman load --input masking-service.tar
podman load --input proxy.tar

For MongoDB data source masking:

podman load --input mongo-unload-service.tar
podman load --input mongo-load-service.tar
podman load --input controller-service.tar
podman load --input masking-service.tar
podman load --input proxy.tar

For Parquet files masking:

podman load --input parquet-unload-service.tar
podman load --input parquet-load-service.tar
podman load --input controller-service.tar
podman load --input masking-service.tar
podman load --input proxy.tar

Create an NFS shared mount, that will act as a Staging Area, on the Hyperscale Compliance Orchestrator
host where the Hyperscale Compliance Orchestrator will perform read/write/execute operations:

Create a ‘Staging Area’ directory. For example: /mnt/hyperscale/staging_area . The user(s)
within each of the podman containers part of the Hyperscale Compliance Orchestrator and the
appliance OS user(s) in the Continuous Compliance Engine(s), all have the user id as 65436 and/or
group ownership id as 50. As such, the ‘staging_area’ directory, along with the
directory(hyperscale) one level above, require the following permissions, based on the UID/GID
of the OS user, so that the Hyperscale Compliance Orchestrator and the Continuous Compliance
Engine(s) can perform read/write/execute operations on the staging area:

If the Hyperscale Compliance OS user has a UID of 65436, then the ‘staging_area’ directory,
along with the directory(hyperscale) one level above, must have a UID of 65436 and 700
permission mode.
If the Hyperscale Compliance OS user has a GID of 50 and does not have a UID of 65436, then
the ‘staging_area’ directory, along with the directory(hyperscale) one level above, must
have a GID of 50 and 770 permission mode.

Mount the NFS shared directory on the staging area directory(/mnt/hyperscale/

staging_area). This NFS shared storage can be created and mounted in two ways as detailed in
the NFS Server Installation section. Based on the umask value for the user which is used to mount,

https://portal.document360.io/continuous-compliance/docs/nfs-server-installation

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 123

4.

a.

b.

c.

d.

the permissions for the staging area directory could get altered after the NFS share has been
mounted. In such cases, the permissions(i.e. 770 or 700 whichever applies based on point 3a) must be
applied again on the staging area directory.

Configure the following container volume bindings for the containers by editing the podman-

compose.yaml file from tar:
For each of the containers, except the ‘proxy’ container, add a volume entry binding the staging area
path (from 3(a), /mnt/hyperscale) to the Hyperscale Compliance Orchestrator container path(

/etc/hyperscale) as a volume binding under the ‘volumes’ section.
[Only Required for Oracle Load Service] For the load-service container, add a volume entry that
binds the path of the directory on the host where both the Oracle instant Client packages were
unzipped to the path on the container (/usr/lib/instantclient) under the ‘volumes’
section.
[Only Required for Delimited Unload Service] For Delimited Files unload-service, the source NFS
location has to be mounted to the container as volume in order for it to access the source files. The
path mounted on the container is passed during the creation of the source connector-info.

Mount your source NFS location onto your Hyperscale Engine server
sudo mount [-t nfs4] <source_nfs_endpoint>:<source_nfs_location>
<nfs_mount_on_host>

Later mount <nfs_mount_on_host> as a podman volume to the delimited
unload-service container (in podman-compose.yaml, created using podman-
compose-delimitedfiles-sample.yaml)
unload-service:
 image: delphix-delimited-unload-service-app:<HYPERSCALE VERSION>
 ...
 volumes:
 ...
 # Source files should be made available within the unload-service
container file system
 # The paths within the container should be configured in the source
section of connector-info [with type=FS]
 -
<nfs_mount_on_host>:<source_files_mount_passed_during_connector_info_creat
ion_path_in_contianer>

[Only Required for Delimited load Service] For Delimited Files load-service, the target NFS location
has to be mounted to the container as volume in order for it to access the target location where
masked files will be placed. The path mounted on the container is passed during the creation of the
target connector-info.

Mount your target NFS location onto your Hyperscale Engine server

The directory created in step 3a (‘staging_area’) will be provided as the mountName and the

corresponding shared path from the NFS file server as the mountPath in the MountFileSystems API.



Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 124

5.

a.
b.
c.

sudo mount [-t nfs4] <target_nfs_endpoint>:<target_nfs_location>
<target_nfs_mount_on_host>

Later mount <nfs_mount_on_host> as a podman volume to the delimited
load-service container (in podman-compose.yaml, created using podman-
compose-delimitedfiles-sample.yaml)
load-service:
 image: delphix-delimited-load-service-app:${VERSION}
 ...
 volumes:
 ...
 # Target location should be made available within the load-service
container file system
 # The paths within the container should be configured in the target
section of connector-info [with type=FS]
 -
<target_nfs_mount_on_host>:<target_location_passed_during_connector_info_c
reation_in_container>

[Optional] Some data (for example, logs, configuration files, etc.) that is generated inside containers may be
useful to debug possible errors or exceptions while running the hyperscale jobs, and as such it may be
beneficial to persist these logs outside containers. The following data can be persisted outside the
containers:

The logs generated for each service i.e. unload, controller, masking, and load services.
The sqlldr utility logs and control files at opt/sqlldr location in the load-service container.
The file-upload folder at /opt/delphix/uploads in the controller-service container

If you would like to persist the above data on your host, then you have the option to do the same by setting up
volume bindings in the respective service as indicated below, that map locations inside the containers to
locations on the host in the podman-compose.yaml file. The host locations again must have a group
ownership id of 50 with a permission mode of 770 or a user id of 65436 with a permission of 700, due to the
same reasons as highlighted in step 3a.

Here are examples of the podman-compose.yaml file for Oracle, MS SQL, MongoDB data sources, Delimited
file, and Parquet file masking:

For Oracle data source masking:

version: "4"
services:
 controller-service:
 image: delphix-controller-service-app:${VERSION}
 security_opt:
 - label:disable
 userns_mode: keep-id
 healthcheck:
 test: 'curl --fail --silent http://localhost:8080/actuator/health | grep UP ||
exit 1'
 interval: 30s
 timeout: 25s
 retries: 3

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 125

 start_period: 30s
 depends_on:
 - unload-service
 - masking-service
 - load-service
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-controller-data:/data
 - /home/hyperscale_user/logs/controller_service:/opt/delphix/logs
 - /mnt/hyperscale:/etc/hyperscale
 environment:
 - API_KEY_CREATE=${API_KEY_CREATE:-false}
 - EXECUTION_STATUS_POLL_DURATION=${EXECUTION_STATUS_POLL_DURATION:-12000}
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=${LOG_LEVEL_CONTROLLER_SERVICE:-INFO}
 - API_VERSION_COMPATIBILITY_STRICT_CHECK=$
{API_VERSION_COMPATIBILITY_STRICT_CHECK:-false}
 - LOAD_SERVICE_REQUIREPOSTLOAD=${LOAD_SERVICE_REQUIRE_POST_LOAD:-true}
 - SKIP_UNLOAD_SPLIT_COUNT_VALIDATION=$
{SKIP_UNLOAD_SPLIT_COUNT_VALIDATION:-false}
 - SKIP_LOAD_SPLIT_COUNT_VALIDATION=${SKIP_LOAD_SPLIT_COUNT_VALIDATION:-false}
 - CANCEL_STATUS_POLL_DURATION=${CANCEL_STATUS_POLL_DURATION:-60000}
 unload-service:
 image: delphix-unload-service-app:${VERSION}
 security_opt:
 - label:disable
 userns_mode: keep-id
 init: true
 environment:
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=${LOG_LEVEL_UNLOAD_SERVICE:-INFO}
 - UNLOAD_FETCH_ROWS=${UNLOAD_FETCH_ROWS:-10000}
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-unload-data:/data
 - /mnt/hyperscale:/etc/hyperscale
 - /home/hyperscale_user/logs/unload_service:/opt/delphix/logs
 masking-service:
 image: delphix-masking-service-app:${VERSION}
 security_opt:
 - label:disable
 userns_mode: keep-id
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-masking-data:/data
 - /mnt/hyperscale:/etc/hyperscale
 - /home/hyperscale_user/logs/masking_service:/opt/delphix/logs

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 126

 environment:
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=${LOG_LEVEL_MASKING_SERVICE:-INFO}
 - INTELLIGENT_LOADBALANCE_ENABLED=${INTELLIGENT_LOADBALANCE_ENABLED:-true}
 load-service:
 image: delphix-load-service-app:${VERSION}
 security_opt:
 - label:disable
 userns_mode: keep-id
 init: true
 environment:
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=${LOG_LEVEL_LOAD_SERVICE:-INFO}
 - SQLLDR_BLOB_CLOB_CHAR_LENGTH=${SQLLDR_BLOB_CLOB_CHAR_LENGTH:-20000}
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-load-data:/data
 - /mnt/hyperscale:/etc/hyperscale
 - /opt/oracle/instantclient_21_5:/usr/lib/instantclient
 - /home/hyperscale_user/logs/load_service:/opt/delphix/logs
 - /home/hyperscale_user/logs/load_service/sqlldr:/opt/sqlldr/
 proxy:
 image: delphix-hyperscale-masking-proxy:${VERSION}
 init: true
 networks:
 - hyperscale-net
 ports:
 - "443:443"
 restart: unless-stopped
 depends_on:
 - controller-service
 #volumes:
 # Uncomment to bind mount /etc/config
 #- /nginx/config/path/on/host:/etc/config
networks:
 hyperscale-net:
volumes:
 hyperscale-load-data:
 hyperscale-unload-data:
 hyperscale-masking-data:
 hyperscale-controller-data:

For MS SQL data source masking: A sample file specific to MS SQL connector is should look like following.

version: "4"
services:
 controller-service:
 image: delphix-controller-service-app:${VERSION}
 security_opt:
 - label:disable
 userns_mode: keep-id
 healthcheck:

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 127

 test: 'curl --fail --silent http://localhost:8080/actuator/health | grep UP ||
exit 1'
 interval: 30s
 timeout: 25s
 retries: 3
 start_period: 30s
 depends_on:
 - unload-service
 - masking-service
 - load-service
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-controller-data:/data
 - /home/hyperscale_user/logs/controller_service:/opt/delphix/logs
 - /mnt/hyperscale:/etc/hyperscale
 environment:
 - API_KEY_CREATE=${API_KEY_CREATE:-false}
 - EXECUTION_STATUS_POLL_DURATION=${EXECUTION_STATUS_POLL_DURATION:-12000}
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=${LOG_LEVEL_CONTROLLER_SERVICE:-INFO}
 - API_VERSION_COMPATIBILITY_STRICT_CHECK=$
{API_VERSION_COMPATIBILITY_STRICT_CHECK:-false}
 - LOAD_SERVICE_REQUIREPOSTLOAD=${LOAD_SERVICE_REQUIRE_POST_LOAD:-true}
 - SKIP_UNLOAD_SPLIT_COUNT_VALIDATION=$
{SKIP_UNLOAD_SPLIT_COUNT_VALIDATION:-false}
 - SKIP_LOAD_SPLIT_COUNT_VALIDATION=${SKIP_LOAD_SPLIT_COUNT_VALIDATION:-false}
 - CANCEL_STATUS_POLL_DURATION=${CANCEL_STATUS_POLL_DURATION:-60000}
 unload-service:
 image: delphix-mssql-unload-service-app:${VERSION}
 security_opt:
 - label:disable
 userns_mode: keep-id
 init: true
 environment:
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=${LOG_LEVEL_UNLOAD_SERVICE:-INFO}
 - UNLOAD_FETCH_ROWS=${UNLOAD_FETCH_ROWS:-10000}
 - SPARK_DATE_TIMESTAMP_FORMAT=${DATE_TIMESTAMP_FORMAT:-yyyy-MM-dd
HH:mm:ss.SSSS}
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-unload-data:/data
 - /mnt/hyperscale:/etc/hyperscale
 - /home/hyperscale_user/logs/unload_service:/opt/delphix/logs
 masking-service:
 image: delphix-masking-service-app:${VERSION}
 security_opt:
 - label:disable
 userns_mode: keep-id
 init: true

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 128

 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-masking-data:/data
 - /mnt/hyperscale:/etc/hyperscale
 - /home/hyperscale_user/logs/masking_service:/opt/delphix/logs
 environment:
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=${LOG_LEVEL_MASKING_SERVICE:-INFO}
 - INTELLIGENT_LOADBALANCE_ENABLED=${INTELLIGENT_LOADBALANCE_ENABLED:-true}
 load-service:
 image: delphix-mssql-load-service-app:${VERSION}
 security_opt:
 - label:disable
 userns_mode: keep-id
 init: true
 environment:
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=${LOG_LEVEL_LOAD_SERVICE:-INFO}
 - SQLLDR_BLOB_CLOB_CHAR_LENGTH=${SQLLDR_BLOB_CLOB_CHAR_LENGTH:-20000}
 - SPARK_DATE_TIMESTAMP_FORMAT=${DATE_TIMESTAMP_FORMAT:-yyyy-MM-dd
HH:mm:ss.SSSS}
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-load-data:/data
 - /mnt/hyperscale:/etc/hyperscale
 - /home/hyperscale_user/logs/load_service:/opt/delphix/logs
 proxy:
 image: delphix-hyperscale-masking-proxy:${VERSION}
 init: true
 networks:
 - hyperscale-net
 ports:
 - "443:443"
 restart: unless-stopped
 depends_on:
 - controller-service
 #volumes:
 # Uncomment to bind mount /etc/config
 #- /nginx/config/path/on/host:/etc/config
networks:
 hyperscale-net:
volumes:
 hyperscale-load-data:
 hyperscale-unload-data:
 hyperscale-masking-data:
 hyperscale-controller-data:

For Delimited Files masking: A sample file specific to the Delimited connector should look like the following.

version: "4"

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 129

services:
 controller-service:
 image: delphix-controller-service-app:<HYPERSCALE VERSION>
 security_opt:
 - label:disable
 userns_mode: keep-id
 healthcheck:
 test: 'curl --fail --silent http://localhost:8080/actuator/health | grep UP ||
exit 1'
 interval: 30s
 timeout: 25s
 retries: 3
 start_period: 30s
 depends_on:
 - unload-service
 - masking-service
 - load-service
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-controller-data:/data
 - /mnt/parent_staging_area:/etc/hyperscale
 environment:
 - API_KEY_CREATE=true
 - EXECUTION_STATUS_POLL_DURATION=120000
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=INFO
 - API_VERSION_COMPATIBILITY_STRICT_CHECK=false
 - LOAD_SERVICE_REQUIREPOSTLOAD=false
 - SKIP_UNLOAD_SPLIT_COUNT_VALIDATION=false
 - SKIP_LOAD_SPLIT_COUNT_VALIDATION=false
 - CANCEL_STATUS_POLL_DURATION=60000
 - SOURCE_KEY_FIELD_NAMES=unique_source_files_identifier
 unload-service:
 image: delphix-delimited-unload-service-app:<HYPERSCALE VERSION>
 security_opt:
 - label:disable
 userns_mode: keep-id
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-unload-data:/data
 # Staging area volume mount, here /mnt/parent_staging_area is used as an
example
 - /mnt/parent_staging_area:/etc/hyperscale
 # Source files should be made available within the unload-service container
file system
 # The paths within the container should be configured in the source section of
connector-info [with type=FS]
 - /mnt/source_files:/mnt/source

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 130

 #- /mnt/source_files2:/mnt/source2
 masking-service:
 image: delphix-masking-service-app:<HYPERSCALE VERSION>
 security_opt:
 - label:disable
 userns_mode: keep-id
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-masking-data:/data
 # Staging area volume mount, here /mnt/parent_staging_area is used as an
example
 - /mnt/parent_staging_area:/etc/hyperscale
 environment:
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=INFO
 - INTELLIGENT_LOADBALANCE_ENABLED=true
 load-service:
 image: delphix-delimited-load-service-app:<HYPERSCALE VERSION>
 security_opt:
 - label:disable
 userns_mode: keep-id
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-load-data:/data
 # Staging area volume mount, here /mnt/parent_staging_area is used as an
example
 - /mnt/parent_staging_area:/etc/hyperscale
 # Target location should be made available within the load-service container
file system
 # The paths within the container should be configured in the target section of
connector-info [with type=FS]
 - /mnt/target_files:/mnt/target
 #- /mnt/target_files2:/mnt/target2
 proxy:
 image: delphix-hyperscale-masking-proxy:<HYPERSCALE VERSION>
 init: true
 networks:
 - hyperscale-net
 ports:
 - "443:443"
 - "80:80"
 restart: unless-stopped
 depends_on:
 - controller-service
networks:
 hyperscale-net:
volumes:
 hyperscale-load-data:

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 131

 hyperscale-unload-data:
 hyperscale-masking-data:
 hyperscale-controller-data:

For Parquet files masking:

version: "4"
services:
 controller-service:
 image: delphix-controller-service-app:${VERSION}
 healthcheck:
 test: 'curl --fail --silent http://localhost:8080/actuator/health | grep UP ||
exit 1'
 interval: 30s
 timeout: 25s
 retries: 3
 start_period: 30s
 depends_on:
 - unload-service
 - masking-service
 - load-service
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-controller-data:/data
 - /mnt/parent_staging_area:/etc/hyperscale
 environment:
 - API_KEY_CREATE=true
 - EXECUTION_STATUS_POLL_DURATION=120000
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=INFO
 - API_VERSION_COMPATIBILITY_STRICT_CHECK=false
 - LOAD_SERVICE_REQUIREPOSTLOAD=false
 - SKIP_UNLOAD_SPLIT_COUNT_VALIDATION=false
 - SKIP_LOAD_SPLIT_COUNT_VALIDATION=false
 - CANCEL_STATUS_POLL_DURATION=60000
 - SOURCE_KEY_FIELD_NAMES=unique_source_files_identifier
 unload-service:
 image: delphix-parquet-unload-service-app:${VERSION}
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-unload-data:/data
 # Staging area volume mount, here /mnt/parent_staging_area is used as an example
 - /mnt/parent_staging_area:/etc/hyperscale
 environment:
 - MAX_WORKER_THREADS_PER_JOB=512
 # The default AWS region and credentials can be set using environment variables
 #- AWS_DEFAULT_REGION=us-east-1

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 132

6.

7.

 #- AWS_ACCESS_KEY_ID=<aws_access_key_id>
 #- AWS_SECRET_ACCESS_KEY=<aws_secret_access_key>
 masking-service:
 image: delphix-masking-service-app:${VERSION}
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-masking-data:/data
 # Staging area volume mount, here /mnt/parent_staging_area is used as an example
 - /mnt/parent_staging_area:/etc/hyperscale
 environment:
 - LOGGING_LEVEL_COM_DELPHIX_HYPERSCALE=INFO
 - INTELLIGENT_LOADBALANCE_ENABLED=true
 load-service:
 image: delphix-parquet-load-service-app:${VERSION}
 init: true
 networks:
 - hyperscale-net
 restart: unless-stopped
 volumes:
 - hyperscale-load-data:/data
 # Staging area volume mount, here /mnt/parent_staging_area is used as an example
 - /mnt/parent_staging_area:/etc/hyperscale
 #environment:
 # The default AWS region and credentials can be set using environment variables
 #- AWS_DEFAULT_REGION=us-east-1
 #- AWS_ACCESS_KEY_ID=<aws_access_key_id>
 #- AWS_SECRET_ACCESS_KEY=<aws_secret_access_key>
 proxy:
 image: delphix-hyperscale-masking-proxy:${VERSION}
 init: true
 networks:
 - hyperscale-net
 ports:
 - "443:443"
 - "80:80"
 restart: unless-stopped
 depends_on:
 - controller-service
networks:
 hyperscale-net:
volumes:
 hyperscale-load-data:
 hyperscale-unload-data:
 hyperscale-masking-data:
 hyperscale-controller-data

(OPTIONAL) To modify the default Hyperscale configuration properties for the application, see

Configuration Settings.

Run the application from the same location where you extracted the podman-compose.yaml file.

https://portal.document360.io/continuous-compliance/docs/configuration-settings-5

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 133

•

•

•

8.

podman-compose up -d

Run the following command to check if the application is running. The output of this command should
shows five containers up and running.

podman-compose ps

Run the following command to access application logs of a given container.

podman logs -f service_container_name>

Run the following command to stop the application (if required).

podman-compose down

Once the application starts, an API key will be generated that will be required to authenticate with the
Hyperscale Compliance Orchestrator. This key will be found in the podman container logs of the controller
service. You can either look for the key from the controller service logs location that was set as a volume
binding in the podman-compose.yaml file or you could use the following 'podman' command to
retrieve the logs.

podman logs -f <service_container_name>

The above command displays an output similar to the following where the string NEWLY GENERATED API

KEY can be grepped from the log::

2022-05-18 12:24:10.981 INFO 7 --- [main] o.a.c.c.C.[Tomcat].[localhost].
[/] : Initializing Spring embedded WebApplicationContext
2022-05-18 12:24:10.982 INFO 7 --- [main]
w.s.c.ServletWebServerApplicationContext : Root WebApplicationContext: initialization
completed in 9699 ms
NEWLY GENERATED API KEY: 1.89lPH1dHSJQwHuQvzawD99sf4SpBPXJADUmJS8v00VCF4V7rjtRFAftGWy
gFfsqM

To authenticate with the Hyperscale Compliance Orchestrator, you must use the API key and include the HTTP
Authorization request header with the type apk; apk <API Key> .

For more information, see the Authentication section under Accessing the Hyperscale Compliance API.

Continuous Compliance Engine Installation

Delphix Continuous Compliance Engine is a multi-user, browser-based web application that provides complete,
secure, and scalable software for your sensitive data discovery, masking, and tokenization needs while meeting
enterprise-class infrastructure requirements. For information about installing the Continuous Compliance Engine,
see Continuous Compliance Engine Installation documentation.

Service container name can be accessed by output of the command podman-compose ps .

Service container name can be accessed by output of the command podman-compose ps .

https://portal.document360.io/continuous-compliance/docs/first-time-setup

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 134

•
•

•

•

How to generate a support bundle (Podman Compose)

1. Find the “generate_support_bundle.sh” script

Login to Hyperscale VM for which you want to generate the support bundle.
generate_support_bundle.sh” file is bundled with the release tar file. You can find this script under tools/

support-scripts folder, (present under the directory, where you will untar the release tar file on

Hyperscale Engine). For example, /path_to_untarred_hyperscale_product/tools/support-

scripts .

Example:

dlpxuser@delphix:~/test$ cd tools/support-scripts/
dlpxuser@delphix:~/test$ ls -ltr
total 48
-rwxr-xr-x 1 delphix staff 823 Jul 7 09:55 generate_support_bundle.sh
-rwxr-xr-x 1 delphix staff 463 Jul 7 09:55 container_information.sh
-rwxr-xr-x 1 delphix staff 5597 Jul 7 09:55 collect_container_support_info.sh
-rw-r--r-- 1 delphix staff 5316 Jul 7 09:55 README.md

2. Modify the “container_information.sh” script parameters

Uncomment following 3 lines in file.

shopt -s expand_aliases
alias docker=podman
alias docker-compose=podman-compose

Change the mount_path and docker_compose_file_path accordingly.

Example:

mount_path=/home/delphix/hyperscale
docker_compose_file_path=/home/delphix/podman-compose.yaml

If it is not already installed, you must install bash shell and yq to generate a Hyperscale support bundle.
For more information on downloading yq, refer to the yq Downloads page on GitHub.



•

•

mount_path: Absolute path configured for mount directory in podman-compose file which is

mapped to /etc/hyperscale .

podman_compose_file_path: Absolute path for podman_compose.yaml file.



https://github.com/mikefarah/yq/#wf_ssl_install

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 135

•

•

•
•
•
•
•

•
•

3. Execute the “generate_support_bundle.sh” script

Execute the “generate_support_bundle.sh” script from tools/support-scripts/ folder.

Example:

dlpxuser@delphix:~/test/tools/support-scripts/$./generate_support_bundle.sh
....
Generating support bundle tar file...
....

Enter the “Password” when prompted.

4. Find the Generated Support Bundle Tar File

The resulting support bundle will be located at /etc/hyperscale/hyperscale-support-

****.tar.gz inside the container. This means the tar file is generated under the path which is mapped to

/etc/hyperscale in podman-compose file and is directly accessible from Hyperscale VM.

Example:

dlpxuser@delphix:~/test$ ls -ltr ../hyperscale/
total 316
drwxrwxrwx 5 1004 1005 4096 Feb 9 10:14 aks-mount
-rw-r--r-- 1 65436 staff 104189 Feb 17 08:52 hyperscale-support-
<current_timestamp>.tar.gz

The support bundle tar file contains the following information:

Hyperscale Logs
The output of mpstat for CPU utilization info.
The output of proc/meminfo for memory info.
The output of proc/cpuinfo for cpu info.
Files to show the memory limit for the application container and the max usage of the app container in
bytes.
Redacted database file to restore the Hyperscale VM
podman compose file

•

•
•

•

The script generate_support_bundle.sh generates a bare-bones support bundle from a Hyperscale
engine running in podman.
Execute the generate_support_bundle.sh from the untar location.
The resulting support bundle will be at /etc/hyperscale/hyperscale-support-

****.tar.gz inside the container. This means the tar file is generated under a path that is

mapped to /etc/hyperscale in podman-compose file and is directly accessible from Hyperscale
VM.
The user should have privileges or permission to execute the podman command in order to
generate the support bundle.



Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 136

1.

2.

3.
4.

NFS server installation
The Hyperscale Compliance Orchestrator requires a Staging Area to read from the source file(s) and write to the
target file(s). The Staging Area must be an NFS-shared filesystem accessible to the Hyperscale Compliance
Orchestrator and the Continuous Compliance Engines. The following are the supported ways by which the
filesystem can be shared over NFS(NFSv3/NFSv4):

Delphix Continuous Data Engine empty VDB
To create a Delphix Virtualization Engine empty VDB, follow the below procedure.

Continuous Data Engine installation
Delphix Virtualization Engine is a data management platform that provides the ability to securely copy and share
datasets. Using virtualization, you will ingest your data sources and create virtual data copies, which are full read-
write capable database instances that use a small fraction of the resources a normal database copy would require.

For information about installing the Virtualization Engine, see Virtualization Engine Installation documentation.

Discover and configure Hyperscale Compliance Orchestrator environment
After installing and configuring the Virtualization Engine, make sure that the Network and Connectivity
Requirements for using Empty VDB on Unix environments are met.
Discover the Hyperscale Compliance Orchestrator Unix host on the Virtulization’s Engine Management
application. For more information, see Adding a Unix Environment.
Navigate to Manage > Environments to view the discovered Hyperscale Compliance Orchestrator Unix host.
After the discovery is completed, configure the same Unix host on the Environments screen such that the IP
addresses of the Hyperscale Compliance Orchestrator Unix host along with the Continuous Compliance
Engines part of the Continuous Compliance Engine cluster are populated in the NFS Addresses field. This is
done to ensure that the empty VDB is shared with both Hyperscale Compliance Orchestrator and the
Continuous Compliance Engines part of the Continuous Compliance Engine cluster.

https://docs.delphix.com/docs/deployment
https://docs.delphix.com/docs/datasets/unstructured-files-and-app-data/unstructured-files-environment-requirements/unstructured-files-on-unix-environments/network-and-connectivity-requirements-for-unix-environments
https://docs.delphix.com/docs/datasets/unstructured-files-and-app-data/unstructured-files-environment-requirements/unstructured-files-on-unix-environments/adding-a-unix-environment

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 137

Provision an empty VDB
1. Follow the steps listed under Create an Empty VDB for Unstructured Files in the Delphix Engine to provision an
empty VDB on the discovered Hyperscale Compliance Orchestrator Unix host.

2. Note the mount path provided while provisioning the empty VDB as that is the path which will be used to fill the
empty VDB with the source file(s) that the Hyperscale Compliance Orchestrator needs to mask and where the target
masked file(s) will be placed.

The location of the mounted empty VDB on the Hyperscale Compliance Orchestrator Unix host can be found with a
simple ‘grep’ of the mount path, provided while provisioning the empty VDB, using the ‘mount’ utility:

hyperscale-engine:~$ df -h | grep /mnt/provision/hyperscale_data

10.119.138.34:/domain0/group-2/appdata_container-3/appdata_timeflow-4/datafile 20T 3.
5T

16T 18% /mnt/provision/hyperscale_data

3. Copy the source file(s) to the location where the empty VDB has been mounted.

Hyperscale Compliance OS user should have read/write permissions on the mount point path where the
empty VDB will be provisioned.Hyperscale Compliance OS user should have read/write permissions on the
mount point path where the empty VDB will be provisioned.



https://docs.delphix.com/docs/datasets/unstructured-files-and-app-data/create-an-empty-vdb-for-unstructured-files-in-the-delphix-engine

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 138

NFS file server
1. An NFS shared filesystem can also be provided by a typical NFS server. Export a filesystem from the NFS file server
such that the Hyperscale Compliance Orchestrator and Continuous Compliance Engines part of the Continuous
Compliance Engine Cluster have read and write permission on it. As such, the export entry should be of the
following form based on the UID/GID corresponding to the owner of the shared path:

<mount_path> <ip1,ip2,ip3,ipn>(rw,all_squash,anonuid=<uid>,anongid=<gid>)

2. Export the NFS share using the below command:

sudo exportfs -rav

3. Once the NFS share is exported from the NFS server, proceed to mount the same share on the Hyperscale
Compliance Orchestrator host:

sudo mount -t nfs -o vers=4 <nfs-server-host-ip>:<mount_path>
<user.home>/hyperscale/mount-dir

Storage requirements for the NFS file server
Considering a single Hyperscale Compliance job execution, the Hyperscale Compliance Orchestrator will store
unloaded files (unloaded from source) and masked files. As such, the required storage will amount to 2X the size of
the source data.

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 139

Accessing the Hyperscale Compliance API
Open a web browser and type the following in the address bar: https://<hyperscale-compliance-host-

address>/hyperscale-compliance . Replace the hyperscale-compliance-host-address with
the IP address of the Hyperscale Compliance Orchestrator VM.

Sample Command to determine the IP address:

Get your hyperscale masking proxy service Cluster IP
Sample command for LINUX
kubectl describe service proxy -n hyperscale-services |grep "IP:" | tr -s " " | cut
-d " " -f 2

Authentication
To authenticate with the Hyperscale Compliance Orchestrator, you must use an API key. It is done by including the
key in the HTTP Authorization request header with the type apk.

An example cURL command with the API Key looks like the following:

curl --header 'Authorization: apk

1.t8YTjLyPiMatdtnhAw9RD0gRVZr2hFsrfikp3YxVl8URdB9zuaVHcMuhXkLd1TLj'

As described in the HTTP Authorization request header documentation, the following is the typical syntax for the
authorization header:

Authorization: <auth-scheme> <authorisation-parameters>

For Basic Authentication, You must include the following header parameters: Authorization: Basic

<credentials>

For the Bearer Authentication scheme, you must use the following: Authorization: Bearer <JWT Bearer

Token>

Creating an API key
An API key is a simple encrypted string that you can use when calling Hyperscale Compliance APIs.

Run the following command to create a new API key.

curl -X 'POST' \
 'https://<host-name>/api/<api_version>/api-keys' \
 -H 'accept: application/json' \

You must use the initial created API key to create a new secure key. It is done by creating a new API Client
entity. The “name” attribute must be the desired name to uniquely identify the user of this key. For more
information about initial created API key, refer to step 8 under the Generate a New Key section.



https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://delphixdocs.atlassian.net/hyperscale-compliance-7-0-0/docs/installation-2

Hyperscale Compliance – Hyperscale Compliance Home

Getting started– 140

 -H 'Authorization: apk
1.t8YTjLyPiMatdtnhAw9RD0gRVZr2hFsrfikp3YxVl8URdB9zuaVHcMuhXkLd1TLj' \
 -H 'Content-Type: application/json' \
 -d '{
 "name": "<name-of-key>"
}'

The above command displays a response message similar to the following:

{
 "api_key_id": 2,
 "token": "2.ExZtmf6EN1xvFMsXpXlOyhHVYlTuFzCm2yGhpUOQQ5ID8N8oGz79d4yn8ZsPhF46"
}

Since you have created a new and secure API key, you must delete the old key for security reasons.

Run the following command to delete the old key.

curl -X 'DELETE' \
 'https://<host-name>/api/<api_version>/api-keys/1' \
 -H 'accept: */*' \
 -H 'Authorization: apk
2.ExZtmf6EN1xvFMsXpXlOyhHVYlTuFzCm2yGhpUOQQ5ID8N8oGz79d4yn8ZsPhF46'

Using the newly generated key
After you delete the old key, revert the changes performed in step 5 of the Hyperscale Compliance Installation and
restart docker-compose.

You must be able to use the new key for authorization as follows:

curl --header 'Authorization: apk

2.ExZtmf6EN1xvFMsXpXlOyhHVYlTuFzCm2yGhpUOQQ5ID8N8oGz79d4yn8ZsPhF46'

Default API Version
If the version is omitted from the base path of the request's URL, a default API version i.e. the latest API version of
that Hyperscale Engine is used.

Copy or save the newly created token from the response as this token value will not be accessible later.

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 141

•
•
•

•

•

•

•

•

•

1.
2.
3.
4.

5.
6.
7.
8.

How to setup a Hyperscale Compliance job

Pre-checks
You must check the following before starting a job:

Storage space must be 2 times the size of the source data for NFS storage.
You must have sufficient storage in the target DB for loading the masked data.
You must check and increase the size of the temporary tablespace in Oracle. For example, if you have 4
billion rows, then you must use 100G.
You must check and provide the required permission(i.e. 770 or 700) after creating an empty VDB(or
mounting an NFS share) on the mount folder on the Hyperscale Compliance host.
Based on the unmask value for the user that is used to mount, the permissions for the staging area directory
could get altered after the empty VDB or NFS share has been mounted. In such cases, you must re-apply the
permissions (i.e. 770 or 700) on the staging area directory.
You must restart the services after changing the permission on VDB mounted folder in case you already have
created the containers.
Continuous Compliance Engine should be cleaned up before use and should only be used with Hyperscale
Job. Any other masking job on Continuous Compliance Engine apart from Hyperscale Compliance
Orchestrator will impact the performance of Hyperscale Compliance jobs.
Currently, the Hyperscale Compliance Orchestrator doesn’t provide the ability to allow you to configure the
masking job behavior in case of non-conformant data and does not process non-conformant data warnings
from the Delphix Continuous Compliance Engine. Therefore, it is recommended to verify the value of
DefaultNonConformantDataHandling algorithm group setting on all the Hyperscale Compliance

Orchestrator. For more information, refer to the Algorithm Group Settings section. It is recommended to set
the value to FAIL so that Hyperscale Job will also fail instead of leaving the data unmasked.
If the table that you are masking has a column type of BLOB/CLOB, then you must have a minimum of 2GB
memory per CLOB/BLOB column. Depending upon the unload-split you are using, you may need to increase
this memory in multiple of that. For example, if you have 4 tables (each with 1 column as BLOB/CLOB type)
and unload-split is 3, then your memory requirement on the Hyperscale Compliance host will be: (4(no.

of tables) x 2(memory required per CLOB/BLOB column) x 3(unload-split

used)GB + 16 GB (minimum required memory for running Hyperscale Compliance

Orchestrator) = 40 GB approx .

API Flow to Setup a Hyperscale Compliance Job
The following is the API flow for setting up and executing a Hyperscale Compliance job.

Register Continuous Compliance Engine(s)
Create a Mount Point
Create Connector Info
Upload format file using POST /file-upload endpoint. For more information, refer to Hyperscale
Compliance API. [Required only for those who need to mask embedded XML/JSON data]
Create Structured Data Format [Required only for those who need to mask embedded XML/JSON data]
Create a Dataset
Create a Job
Create Execution

https://portal.document360.io/continuous-compliance/docs/masking-api-client#algorithm-group-settings

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 142

The following are the sample API requests/responses for a typical Hyperscale Compliance job execution workflow.
The APIs can be accessed using a swagger-based API client by accessing the following URL; https://

<hyperscale-compliance-host-address>/hyperscale-compliance .

Engines API
POST /engines (register an engine):

Request:

{
"name": "Delphix Continuous Compliance Engine 6.0.14.0 on AWS",
"type": "MASKING",
"protocol": "http",
"hostname": "de-6014-continuous-compliance.delphix.com",
"username": "hyperscale_compliance_user",
"password": "password123"
}

Response:

{
"id": 1,
"name": "Delphix Continuous Compliance Engine 6.0.14.0 on AWS",
"type": "MASKING",
"protocol": "http",
"hostname": "de-6014-continuous-compliance.delphix.com",
"username": "hyperscale_compliance_user",
"ssl": true,
"ssl_hostname_check": true
}

MountFileSystems API
POST /mount-filesystems (create a file mount)

Request:

{
"mountName": "staging_area",
"hostAddress": "de-6014-continuous-data.dlpxdc.co",
"mountPath": "/domain0/group-2/appdata_container-12/appdata_timeflow-13/datafile",
"mountType": "NFS4",
"options": "rw"
}

APIs must be called only in the below order.

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 143

Response:

{
"id": 1,
"mountName": "staging_area",
"hostAddress": "de-6014-continuous-data.dlpxdc.co",
"mountPath": "/domain0/group-2/appdata_container-12/appdata_timeflow-13/datafile",
"mountType": "NFS4",
"options": "rw"
}

ConnectorInfo API
POST /connector-info (create connector info for Hyperscale Compliance)

Oracle Request:

{
"source": {
"jdbc_url": "jdbc:oracle:thin:@oracle-19-src.dlpxdc.co:1521/VDBOMSRDC20SRC",
"user": "oracle_db_user",
"password": "password123"
},
"target": {
"jdbc_url": "jdbc:oracle:thin:@rh79-ora-19-tgt.dlpxdc.co:1521/VDBOMSRDC200B_TGT",
"user": "oracle_db_user",
"password": "password123"
}
}

Oracle Response:

{
"id": 1,
"source": {
"jdbc_url": "jdbc:oracle:thin:@oracle-19-src.dlpxdc.co:1521/VDBOMSRDC20SRC",
"user": "oracle_db_user"
},
"target": {
"jdbc_url": "jdbc:oracle:thin:@rh79-ora-19-tgt.dlpxdc.co:1521/VDBOMSRDC200B_TGT",
"user": "oracle_db_user"
}
}

Example 2: This example is for the cases where either username or password needs to be in either uppercase
or camel case

Oracle Request:

{

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 144

"source": {
"user": "\"y2ijf0oj2\"",
"password": "\"xyz\"",
"jdbc_url": "jdbc:oracle:thin:@xyz.com:1521/DBOMSRDC200B",
"connection_properties": {}
},
"target": {
"jdbc_url": "jdbc:oracle:thin:@xyx.com:1521/DBOMSRDC200B",
"user": "\"y2ijf0oj2\"",
"password": "\"xyz\"",
"connection_properties": {}
}
}

Oracle Response:

{
"id": 1,
"source": {
"user": "\"y2ijf0oj2\"",
"jdbc_url": "jdbc:oracle:thin:@xyz.com:1521/DBOMSRDC200B",
"connection_properties": {}
},
"target": {
"jdbc_url": "jdbc:oracle:thin:@xyx.com:1521/DBOMSRDC200B",
"user": "\"y2ijf0oj2\"",
"connection_properties": {}
}
}

MSSQL Request:

{
 "source": {
 "jdbc_url": "jdbc:sqlserver://hyperscale-
mssql.dlpxdc.co;database=SourceDB2019;instanceName=SQL2019",
 "user": "sa",
 "password": "password123"
 },
 "target": {
 "jdbc_url": "jdbc:sqlserver://hyperscale-
mssql.dlpxdc.co;database=SourceDB2019;instanceName=SQL2019;",
 "user": "sa",
 "password": "password123"
 }
}

MSSQL Response:

{
 "id": 1,

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 145

 "source": {
 "user": "sa",
 "jdbc_url": "jdbc:sqlserver://hyperscale-
mssql.dlpxdc.co;database=SourceDB2019;instanceName=SQL2019"
 },
 "target": {
 "jdbc_url": "jdbc:sqlserver://hyperscale-
mssql.dlpxdc.co;database=SourceDB2019;instanceName=SQL2019;",
 "user": "sa",
 }
}

Delimited FIles Request:

{
 "source": {
 "type": "FS",
 "properties": {
 "server": "local",
 "path": "/mnt/source"
 }
 },
 "target": {
 "type": "FS",
 "properties": {
 "server": "local",
 "path": "/mnt/target"
 }
 }
}

Delimited FIles Response:

{
 "id": 1,
 "source": {
 "type": "FS",
 "properties": {
 "server": "local",
 "path": "/mnt/source"
 }
 },
 "target": {
 "type": "FS",
 "properties": {
 "server": "local",

Here `type=FS` means “File System”. Currently, the Delimited Files connector only supports files
mounted directly onto the docker container, i.e. available on the container file system. In the above
example `/mnt/source` & `/mnt/target` are paths inside the container that denote the source and target
location respectively.



Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 146

 "path": "/mnt/target"
 }
 }
}

MongoDB Connector Request:

{
 "source": {
 "mongo_url": "mongodb://<hostname>:<port>",
 "user": "mongo_user",
 "password": "mongo_password"
 },
 "target": {
 "mongo_url": "mongodb://<hostname>:<port>/?
replicaSet=<mongo_rs>&tls=true&tlsCertificateKeyFile=<cert_path>",
 "user": "mongo_user",
 "password": "mongo_password"
 }
}

MongoDB Connector Response:

{
 "source": {
 "mongo_url": "mongodb://mongodb-src.example:27017",
 "user": "mongo_user",
 },
 "target": {
 "mongo_url": "mongodb://mongodb-tgt.example.com:27017",
 "user": "mongo_user",
 }
}

Parquet Request:

Example1 - Without AWS S3 bucket credentials:

{
 "source": {
 "type": "AWS",
 "properties": {

A failure in the load may leave the target datasource in an inconsistent state since the load step truncates
the target when it begins. If the source and target data source are configured to be the same datasource
and a failure occurs in the load step, it is recommended that the single datasource be restored from a
backup(or use the continuous data engine's rewind feature if you have a VDB as the single datasource)
after the failure in the load step as the datasource may be in an inconsistent state. After the datasource is
restored, you may kick off another hyperscale job. If the source and target data source are configured to be
different, you may use the Hyperscale Compliance Orchestrator restartability feature to restart the job
from the point of failure in the load/post-load step.



Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 147

 "server": "S3",
 "path": "s3_bucket_source/sub_folder"
 }
 },
 "target": {
 "type": "AWS",
 "properties": {
 "server": "S3",
 "path": "s3_bucket_target/sub_folder"
 }
 }
}

Example2 - With AWS S3 bucket credentials:

{
 "source": {
 "type": "AWS",
 "properties": {
 "server": "S3",
 "path": "s3_bucket_source/sub_folder",
 "aws_region": "us-east-1",
 "aws_access_key_id": "AKIAYHUJKLDHMB",
 "aws_secret_access_key": "x2IXoHDYHhdydmmm&h12563kaka",
 "aws_role_arn": "56436882398"
 }
 },
 "target": {
 "type": "AWS",
 "properties": {
 "server": "S3",
 "path": "s3_bucket_target/sub_folder",
 "aws_region": "us-east-1",
 "aws_access_key_id": "AKIAYHUJKLDHMB",
 "aws_secret_access_key": "x2IXoHDYHhdydmmm&h12563kaka",
 "aws_role_arn": "56436882398"
 }
 }
}

Example 3 - With Mounted Filesystem:

{
 "id": 1,
 "connectorName": "Parquet_Connector_FS",
 "source": {
 "type": "FS",
 "properties": {
 "server": "local",
 "path": "/mnt/source"
 }
 },

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 148

•

•
•
•

•
•
•
•
•

 "target": {
 "type": "FS",
 "properties": {
 "server": "local",
 "path": "/mnt/target"
 }
 }
}

Overview of the parameters:

type: Here we refer to the type of connector we are creating. Currently, we only support “AWS” which refers
to “Cloud vendor”, indicating that all the source and target files are available within the container through
AWS credentials.
properties: Holds the server and path values.
server: Points to the S3 location. Currently, this is ignored as the only supported type is “AWS”.
path: The path to the AWS source/target S3 bucket location. This path needs not be the exact path to the
files, but a parent directory. In case you are planning to use a profiler then this path must be the exact path
to the parquet files.
Additional parameters [in case AWS credentials need to be passed for separately]:

aws_region: The AWS region the S3 bucket is part of.
aws_access_key_id: The AWS access key ID generated for the AWS Role.
aws_secret_access_key: The AWS secret access key generated for the AWS Role.
aws_role_arn: The AWS Role Identifier.

Parquet Response:

For Example1

{
 "source": {
 "type": "AWS",
 "properties": {
 "server": "S3",
 "path": "s3_bucket_source/sub_folder"
 }
 },
 "target": {
 "type": "AWS",
 "properties": {
 "server": "S3",
 "path": "s3_bucket_target/sub_folder"
 }
 }
}

For Example2

Here `type=FS` means “File System”. Currently, the Parquet connector only supports files mounted
directly onto the docker container, i.e. available on the container file system. In the above example `/
mnt/source` & `/mnt/target` are paths inside the container that denote the source and target location
respectively.

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 149

{
 "source": {
 "type": "AWS",
 "properties": {
 "server": "S3",
 "path": "s3_bucket_source/sub_folder",
 "aws_region": "us-east-1",
 "aws_access_key_id": "AKIA********",
 "aws_secret_access_key": "x2IX********",
 "aws_role_arn": "56436882398"
 }
 },
 "target": {
 "type": "AWS",
 "properties": {
 "server": "S3",
 "path": "s3_bucket_target/sub_folder",
 "aws_region": "us-east-1",
 "aws_access_key_id": "AKIA********",
 "aws_secret_access_key": "x2IX********",
 "aws_role_arn": "56436882398"
 }
 }
}

For Example3

{
 "id": 1,
 "connectorName": "Parquet_Connector_FS",
 "source": {
 "type": "FS",
 "properties": {
 "server": "local",
 "path": "/mnt/source"
 }
 },
 "target": {
 "type": "FS",
 "properties": {
 "server": "local",
 "path": "/mnt/target"
 }
 }
}

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 150

StructuredDataFormat APIs
This functionality is specifically needed when there is a requirement to mask XML/JSON data contained within
database columns. These endpoints require a file_upload_ref that can be generated via the POST /

file-upload endpoint wherein you must upload the format of the XML/JSON data to be masked. For more
information, refer to the Hyperscale Compliance API documentation.

POST /structured-data-format (create structured-data-format for a column)

Request:

{
 "file_upload_ref": "delphix-file://upload/f_XXXX/XXX.xml",
 "doc_type": "XML",
 "masking_inventory_paths": [
 {
 "path": "/catalog/book/author",
 "domain_name": "NULL_SL",
 "algorithm_name": "dlpx-core:FullName"
 },
 {
 "path": "/catalog/book/isbn",
 "domain_name": "ADDRESS",
 "algorithm_name": "dlpx-core:CM Alpha-Numeric"
 }
]
}

Response:

{
 "structured_data_format_id":1,
 "file_upload_ref": "delphix-file://upload/f_XXXX/XXX.xml",
 "doc_type": "XML",
 "masking_inventory_paths": [
 {
 "path": "/catalog/book/author",
 "domain_name": "NULL_SL",
 "algorithm_name": "dlpx-core:FullName"
 },
 {
 "path": "/catalog/book/isbn",
 "domain_name": "ADDRESS",
 "algorithm_name": "dlpx-core:CM Alpha-Numeric"
 }
]
}

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 151

DataSets API

POST /data-sets (create dataset for Hyperscale Compliance)

Request (with single table):

{
"connector_id": 1,
"mount_filesystem_id": 1,
"data_info": [
{
"source": {
 "schema_name": "SCHEMA_1",
 "table_name": "TABLE_1",
 "unload_split": 4
},
"target": {
 "schema_name": "SCHEMA_1_TARGET",
 "table_name": "TABLE_1_TARGET",
 "stream_size": 65536
},
"masking_inventory": [
 {
 "field_name": "FIRST_NAME",
 "domain_name": "FIRST_NAME",
 "algorithm_name": "FirstNameLookup"
 },
 {
 "field_name": "LAST_NAME",
 "domain_name": "LAST_NAME",
 "algorithm_name": "LastNameLookup"
 },
 {
 "field_name": "XmlData",
 "structured_data_format_id": 1

•
•

•
•

Table and schema names are case-sensitive.
For the MSSQL connector, it's recommended to provide filter_key if the unload_split count is more
than 1, and the table does not contain a primary/unique key, else data will be unloaded through a
sequential approach which may be slower. If filter_key is not provided and the table includes a
primary/unique key then Hyperscale will scan the table to fetch the key automatically.
The dataset date format should be the same as the environment variable date format value.
In one dataset, all the inventories should use the same date format for all date formats.



•

•

Alternatively, you can create or update the dataset using payload in a file with the below endpoints:
POST /data-sets/file-upload

PUT /data-sets/file-upload/{dataSetId}

The above endpoints require a file_upload_ref that can be generated via the POST /file-

upload endpoint. For more information, refer to the Hyperscale Compliance API documentation.



Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 152

 }
]
}
]
}

Response (with single table):

{
"id": 1,
"connector_id": 1,
"mount_filesystem_id": 1,
"data_info": [
{
"source": {
 "schema_name": "SCHEMA_1",
 "table_name": "TABLE_1",
 "unload_split": 4
},
"target": {
 "schema_name": "SCHEMA_1",
 "table_name": "TABLE_1",
 "stream_size": 65536
},
"masking_inventory": [
 {
 "field_name": "FIRST_NAME",
 "domain_name": "FIRST_NAME",
 "algorithm_name": "FirstNameLookup"
 },
 {
 "field_name": "LAST_NAME",
 "domain_name": "LAST_NAME",
 "algorithm_name": "LastNameLookup"
 },
 {
 "field_name": "XmlData",
 "structured_data_format_id": 1
 }
]
}
]
}

Request (with single table & filter_key in the source):

{
"connector_id": 1,
"mount_filesystem_id": 1,
"data_info": [
{
"source": {

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 153

 "schema_name": "SCHEMA_1",
 "table_name": "TABLE_1",
 "unload_split": 4,
 "filter_key": "PKID"
},
"target": {
 "schema_name": "SCHEMA_1_TARGET",
 "table_name": "TABLE_1_TARGET",
 "stream_size": 65536
},
"masking_inventory": [
 {
 "field_name": "FIRST_NAME",
 "domain_name": "FIRST_NAME",
 "algorithm_name": "FirstNameLookup"
 },
 {
 "field_name": "LAST_NAME",
 "domain_name": "LAST_NAME",
 "algorithm_name": "LastNameLookup"
 },
 {
 "field_name": "XmlData",
 "structured_data_format_id": 1
 }
]
}
]
}

Response (with single table & filter_key in the source):

{
"id": 1,
"connector_id": 1,
"mount_filesystem_id": 1,
"data_info": [
{
"source": {
 "schema_name": "SCHEMA_1",
 "table_name": "TABLE_1",
 "unload_split": 4,
 "filter_key": "PKID"
},
"target": {
 "schema_name": "SCHEMA_1",
 "table_name": "TABLE_1",
 "stream_size": 65536
},
"masking_inventory": [
 {
 "field_name": "FIRST_NAME",

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 154

 "domain_name": "FIRST_NAME",
 "algorithm_name": "FirstNameLookup"
 },
 {
 "field_name": "LAST_NAME",
 "domain_name": "LAST_NAME",
 "algorithm_name": "LastNameLookup"
 },
 {
 "field_name": "XmlData",
 "structured_data_format_id": 1
 }
]
}
]
}

Request (with multiple tables):

{
"connector_id": 1,
"mount_filesystem_id": 1,
"data_info": [
{
"source": {
"unload_split": 2,
"schema_name": "DLPXDBORA",
"table_name": "test_multi_0"
},
"target": {
"stream_size": 65536,
"schema_name": "DLPXDBORA",
"table_name": "test_multi_0"
},
"masking_inventory": [
{
"field_name": "col_VARCHAR",
"domain_name": "FIRST_NAME",
"algorithm_name": "FirstNameLookup"
},
{
"field_name": "XmlData",
"structured_data_format_id": 1
}
]
},
{
"source": {
"unload_split": 2,
"schema_name": "DLPXDBORA",
"table_name": "test_multi_1"
},

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 155

"target": {
"stream_size": 65536,
"schema_name": "DLPXDBORA",
"table_name": "test_multi_1"
},
"masking_inventory": [
{
"field_name": "COL_TIMESTAMP",
"domain_name": "DOB",
"algorithm_name": "DateShiftVariable",
"date_format": "yyyy-MM-dd HH:mm:ss.SSS" -->(optional field, this needs to be added
only while working with date/time masking)
}
]
}
]
}

Response (with multiple tables):

{
"id": 1,
"connector_id": 1,
"mount_filesystem_id": 1,
"data_info": [
{
"source": {
"unload_split": 2,
"schema_name": "DLPXDBORA",
"table_name": "test_multi_0"
},
"target": {
"stream_size": 65536,
"schema_name": "DLPXDBORA",
"table_name": "test_multi_0"
},
"masking_inventory": [
{
"field_name": "col_VARCHAR",
"domain_name": "FIRST_NAME",
"algorithm_name": "FirstNameLookup"
},
{
"field_name": "XmlData",
"structured_data_format_id": 1
}
]
},
{
"source": {
"unload_split": 2,
"schema_name": "DLPXDBORA",

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 156

"table_name": "test_multi_1"
},
"target": {
"stream_size": 65536,
"schema_name": "DLPXDBORA",
"table_name": "test_multi_1"
},
"masking_inventory": [
{
"field_name": "COL_TIMESTAMP",
"domain_name": "DOB",
"algorithm_name": "DateShiftVariable",
"date_format": "yyyy-MM-dd HH:mm:ss.SSS"
}
]
}
]
}

Delimited Files DataSet request:

{
 "connector_id": 1,
 "mount_filesystem_id": 1,
 "data_info": [
 {
 "source": {
 "delimiter": "|",
 "endOfRecord": "\n",
 "enclosure": "\"",
 "enclosureEscapeCharacter": "\\",
 "escapeEnclosureEscapeCharacter": false,
 "unique_source_files_identifier": "file_identifier1",
 "has_headers": false,
 "unload_split": 100,
 "source_files": [
 "file1.txt",
 "file2.txt"
]
 },
 "target": {
 "perform_join": true
 },
 "masking_inventory": [
 {
 "field_name": "f3",
 "domain_name": "FIRST_NAME",
 "algorithm_name": "FirstNameLookup"
 },
 {
 "field_name": "f5",
 "domain_name": "LAST_NAME",

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 157

1.
2.
3.
4.
5.

6.
a.

b.

7.

8.
a.
b.
c.

i.

1.

2.

ii.
1.

2.

1.
a.

i.

ii.

 "algorithm_name": "LastNameLookup"
 }
]
 }
]
}

The source DataSet consists of the following parameters:

delimiter: The single character length delimiter used in source files.
endOfRecord : The end of line character, currently we only support `\n` , `\r` & `\r\n` .
enclosure: The single character length quote character used in the source files.
enclosureEscapeCharacter: The escape character used to escape quote characters.
unique_source_files_identifier: This is the source key that maps the load-service and masking-service data
sets with the unload-service data set. Please ensure that this value is different for each item in the DataSet
data_info list.
has_headers: A flag that indicates if the character source files have header column names or not.

If set to true, format files with the same column names are created and the same can be used for the
masking inventory.
If set to false, the column names of pattern f0, f1, f2, and so on are used to create the format files for
delimited file masking. When adding the masking inventory please make sure to use field_name with
values f0, f1, f2, and so on.

unload_split: The number of splits that the files in the source_files list have to be split into. Please ensure
that the split number is not too small nor too big for better overall performance.
source_files: List of all source files that need to be masked and adhere to the following rules:

All files should have the same delimiter character and other helper characters.
All files should have the same number of columns and the same column names if it has a header line.
Supported input formats:

Relative path to the file - relative to the configured connector source path. Examples
(considering that the source path within the container is /mnt/source):

If the absolute path of the file was `/mnt/source/file1.txt` , then the

source_files list should only contain `files1.txt` .

If the absolute path of the file was `/mnt/source/some_dir/file1.txt` ,

then the source_files list should contain the value `some_dir/file1.txt` .
Blob pattern - the path to all files matching a blob. Examples:

If we want to mask files `/mnt/source/file1.txt` and `/mnt/source/

file2.txt` , then the source_files list can contain the value `file*.txt` .

If we want to mask all files within a directory, we can add `directory/*` to the
source_files list.

The target DataSet consists of the following parameters:

perform_join: A flag to check if the load-service joins back all masked files or not.
If set to true, the load-service will join back masked files and keep the same relative file location
structure in the target path (considering that the target path within the container is /mnt/target).

If the input was `file1.txt` , then the output file will be `/mnt/target/

file1.txt`

If the input was `some_dir/file1.txt` , then the output file will be `/mnt/target/

some_dir/file1.txt` .

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 158

b.

i.

ii.

If set to false, the split masked files will be placed in the same relative file location structure in the
target path with a split number appended to the file name.

If the input was `file1.txt` , then the output files will be `/mnt/target/

file1_0.txt` , `/mnt/target/file1_1.txt` , and so on.

If the input was `some_dir/file1.txt`, then the output files will be `/mnt/target/

some_dir/file1_0.txt` , `/mnt/target/some_dir/file1_1.txt` , and so on.

The masking inventory remains the same, except when there are no column names in the delimited files and the
connector assumes that the column names would be `f0`, `f1`, `f2` , and so on. These are field names
that have to be used to fill up the masking inventory (as shown in the example above).

Delimited Files DataSet response:

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 159

{
 "id": 1,
 "connector_id": 1,
 "mount_filesystem_id": 1,
 "data_info": [
 {
 "source": {
 "delimiter": "|",
 "endOfRecord": "\n",
 "enclosure": "\"",
 "enclosureEscapeCharacter": "\\",
 "escapeEnclosureEscapeCharacter": false,
 "unique_source_files_identifier": "file_identifier1",
 "has_headers": false,
 "unload_split": 100,
 "source_files": [
 "file1.txt",
 "file2.txt"
]
 },
 "target": {
 "perform_join": true
 },
 "masking_inventory": [
 {
 "field_name": "f3",
 "domain_name": "FIRST_NAME",
 "algorithm_name": "FirstNameLookup"
 },
 {
 "field_name": "f5",
 "domain_name": "LAST_NAME",
 "algorithm_name": "LastNameLookup"
 }
]
 }
]
}

MongoDB DataSet request:

{
 "connector_id": 1,
 "mount_filesystem_id": 1,
 "data_info": [
 {
 "source": {
 "database_name": "SRC_DB",
 "collection_name": "SRC_COLLECTION",
 "unload_split": 10
 },
 "target": {

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 160

•

•

 "database_name": "TGT_DB",
 "collection_name": "TGT_COLLECTION"
 },
 "masking_inventory": [
 {
 "field_name": "$[*]['relationships'][*]['person']['first_name']",
 "domain_name": "FIRST_NAME",
 "algorithm_name": "dlpx-core:FullName"
 },
 {
 "field_name": "$[*]['address']",
 "domain_name": "ADDRESS",
 "algorithm_name": "dlpx-core:CM Alpha-Numeric"
 }
]
 }
]
}

unload_split: The number of splits that the MongoDB collection has to be split into. You must make sure
that the split number is neither too small nor too big for a better overall performance.
masking_inventory: The masking inventory for MongoDB collection can be generated by using the
MongoDB Profiler service, which will call the dataset API with the generated masking_inventory and create
the dataset. MongoDB Profiler artifact includes a README file that provides detailed usage instructions.

MongoDB DataSet response:

{
 "connector_id": 1,
 "mount_filesystem_id": 1,
 "data_info": [
 {
 "source": {
 "database_name": "SRC_DB",
 "collection_name": "SRC_COLLECTION",
 "unload_split": 10
 },
 "target": {
 "database_name": "TGT_DB",
 "collection_name": "TGT_COLLECTION"
 },
 "masking_inventory": [
 {
 "field_name": "$[*]['relationships'][*]['person']['first_name']",
 "domain_name": "FIRST_NAME",
 "algorithm_name": "dlpx-core:FullName"
 },
 {
 "field_name": "$[*]['address']",
 "domain_name": "ADDRESS",
 "algorithm_name": "dlpx-core:CM Alpha-Numeric"
 }
]

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 161

1.

2.

3.
4.

a.

 }
]
}

Parquet DataSet request:

{
 "connector_id": 1,
 "mount_filesystem_id": 1,
 "data_info": [
 {
 "source": {
 "unique_source_files_identifier": "file_identifier1",
 "unload_split": 100,
 "file_type": "parquet",
 "source_files": [
 "relative_folder1/file1.parquet",
 "relative_folder2/file2.parquet"
]
 },
 "target": {
 "perform_join": true
 },
 "masking_inventory": [
 {
 "field_name": "colume_name1",
 "domain_name": "FIRST_NAME",
 "algorithm_name": "FirstNameLookup"
 },
 {
 "field_name": "colume_name2",
 "domain_name": "LAST_NAME",
 "algorithm_name": "LastNameLookup"
 }
]
 }
]
}

The source DataSet consists of the following parameters:

unique_source_files_identifier: This is the source key that maps the load-service and masking-service data
sets with the unload-service data set. Please ensure that this value is different for each item in the DataSet
data_info list.
unload_split: The number of splits that the files in the source_files list have to be split into. Please ensure
that the split number is not too small nor too big for better overall performance.
file_type: The file type should be set to “parquet”.
source_files: List of all source files that need to be masked and adhere to the following rules:

All files should have the same delimiter character and other helper characters.

The Hyperscale Parquet Profiler can be used to analyze the source parquet files and help generate the
DataSet with the masking inventory. To know more, visit the Parquet Profiler documentation.



Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 162

b.
c.

i.

1.

2.

ii.
1.

2.

1.
a.

i.

ii.

b.

i.

ii.

All files should have the same number of columns and the same column names if it has a header line.
Supported input formats:

Relative path to the file, relative to the configured connector source path. Examples
(considering that the source path within the container is s3_bucket/source):

If the file's absolute path was `s3_bucket/source/file1.parquet` , then the

source_files list should only contain `files1.parquet` .

If the absolute path of the file was `s3_bucket/source/some_dir/

file1.parquet` , then the source_files list should contain the value

`some_dir/file1.parquet` .
Blob pattern, the path to all files matching a blob. Examples:

If we want to mask files `s3_bucket/source/file1.parquet` and

`s3_bucket/source/file2.parquet` , then the source_files list can contain

the value `file*.parquet` .

If we want to mask all files within a directory, we can add `directory/*` to the
source_files list.

The target DataSet consists of the following parameters:

perform_join: A flag to check if the load-service joins back all masked files or not.
If set to true, the load-service will join back masked files and keep the same relative file location
structure in the target path (considering that the target path within the container is s3_bucket/
target).

If the input was `file1.parquet` , then the output file will be `s3_bucket/target/

file1.parquet`

If the input was `some_dir/file1.parquet` , then the output file will be

`s3_bucket/target/some_dir/file1.parquet` .
If set to false, the split masked files will be placed in the same relative file location structure in the
target path with a split number appended to the file name.

If the input was `file1.parquet` , then the output files will be `s3_bucket/

target/file1_0.parquet` , `s3_bucket/target/file1_1.parquet` , and so
on.
If the input was `some_dir/file1.txt`, then the output files will be `s3_bucket/target/

some_dir/file1_0.parquet` , `s3_bucket/target/some_dir/

file1_1.parquet` , and so on.

Parquet DataSet response:

{
 "connector_id": 1,
 "mount_filesystem_id": 1,
 "data_info": [
 {
 "source": {
 "unique_source_files_identifier": "file_identifier1",
 "unload_split": 100,
 "file_type": "parquet",

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 163

 "source_files": [
 "<relative_path>/file1.parquet",
 "<relative_path>/file2.parquet"
]
 },
 "target": {
 "perform_join": true
 },
 "masking_inventory": [
 {
 "field_name": "colume_name1",
 "domain_name": "FIRST_NAME",
 "algorithm_name": "FirstNameLookup"
 },
 {
 "field_name": "colume_name2",
 "domain_name": "LAST_NAME",
 "algorithm_name": "LastNameLookup"
 }
]
 }
]
}

Jobs API
POST /jobs (Create a Hyperscale Compliance job)

{
 "name": "job_1",

1.

2.

1.

2.

Algorithm and Domain names to be provided in the Data Set request should be used from Continuous
Compliance Engine. The Continuous Compliance Engine APIs that could be used to get these names are:

Get all algorithms (GET /algorithms) for Algorithm Names. Sample Endpoint: https://
maskingdocs.delphix.com/maskingApiEndpoints/
5_1_15_maskingApiEndpoints.html#getAllAlgorithms
Get all domains (GET /domains) for Domain Names. Sample Endpoint: https://
maskingdocs.delphix.com/maskingApiEndpoints/
5_1_15_maskingApiEndpoints.html#getAllDomains

To check about extra parameters that need to be provided in the Data Set request for Date and Multi
Column Algorithms, refer to Model DataSet_masking_inventory on the Hyperscale Compliance
API Documentation page available in the API Reference section of this Documentation.
Alternatively, you can create/update the dataset using payload in a file with below end-points:

POST /data-sets/file-upload

PUT /data-sets/file-upload/{dataSetId}

Above endpoints requires a file_upload_ref, which can be generated via POST /file-upload
endpoint.See <Link to API Doc>.



https://maskingdocs.delphix.com/maskingApiEndpoints/5_1_15_maskingApiEndpoints.html#getAllAlgorithms
https://maskingdocs.delphix.com/maskingApiEndpoints/5_1_15_maskingApiEndpoints.html#getAllDomains

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 164

 "masking_engine_ids": [
 1
],
 "data_set_id": 1,
 "app_name_prefix": "app",
 "env_name_prefix": "env",
 "retain_execution_data": "NO",
 "source_configs": {
 "max_concurrent_source_connection": 30
 },
 "target_configs": {
 "max_concurrent_target_connection": 30,
 "parallelism_degree": 15
 },
 "masking_job_config": {
 "max_memory": 1024,
 "min_memory": 0,
 "description": "Job created by Hyperscale Masking",
 "feedback_size": 100000,
 "stream_row_limit": 10000,
 "num_input_streams": 1
 }
}

Response:

{
 "id": 1,
 "name": "Test_Job",
 "masking_engine_ids": [
 1,
 2,
 3
],
 "data_set_id": 1,
 "app_name_prefix": "Test_App",
 "env_name_prefix": "Test_Env",
 "retain_execution_data": "NO",
 "source_configs": {
 "max_concurrent_source_connection": 30

•
•

a.
b.
c.

For more information on retain_execution_data flag , see Cleaning Up Execution Data.
In the case of Oracle, set parallelism_degree in the target_configto use the degree of parallelism
while re-creating the indexes in the post-load step.

Set {"parallelism_degree" :0 }: Use unmodified DDL provided by Oracle.
Set {"parallelism_degree": -1}: Remove any parallel or nonparallel clause from the DDL.
Set {"parallelism_degree": any positive vale}: Remove existing parallel degree or
nonparallel clause and add Parallel <parallelism_degree> to the DDL.



Below properties are only applicable to Oracle Datasource.

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 165

 },
 "target_configs": {
 "max_concurrent_target_connection": 30
 },
 "masking_job_config": {
 "max_memory": 1024,
 "min_memory": 1024,
 "description": "Job created by Hyperscale Masking",
 "feedback_size": 100000,
 "stream_row_limit": 10000,
 "num_input_streams": 1
 }
}

Delimited Files Job request:

The Delimited FIles job does not require the source_configs and target_configs objects.

{
 "name": "job_1",
 "masking_engine_ids": [
 1
],
 "data_set_id": 1,
 "app_name_prefix": "app",
 "env_name_prefix": "env",
 "retain_execution_data": "NO",
 "masking_job_config": {
 "max_memory": 1024,
 "min_memory": 0,
 "description": "Job created by Hyperscale Masking",
 "feedback_size": 100000,
 "stream_row_limit": 10000,
 "num_input_streams": 1
 }
}

Delimited Files Job response:

{
 "id": 1,
 "name": "job_1",
 "masking_engine_ids": [
 1
],
 "data_set_id": 1,
 "app_name_prefix": "app",
 "env_name_prefix": "env",
 "retain_execution_data": "NO",
 "masking_job_config": {
 "max_memory": 1024,
 "min_memory": 0,

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 166

 "description": "Job created by Hyperscale Masking",
 "feedback_size": 100000,
 "stream_row_limit": 10000,
 "num_input_streams": 1
 }
}

MongoDB Job request:

The MongoDB job does not require the source_configs and target_configs objects.

{
 "name": "job_1",
 "masking_engine_ids": [
 1
],
 "data_set_id": 1,
 "app_name_prefix": "app",
 "env_name_prefix": "env",
 "retain_execution_data": "NO",
 "masking_job_config": {
 "max_memory": 1024,
 "min_memory": 0,
 "description": "Job created by MongoDB Hyperscale Masking",
 "feedback_size": 100000,
 "stream_row_limit": 10000,
 "num_input_streams": 1
 }
}

MongoDB Job response:

{
 "name": "job_1",
 "masking_engine_ids": [
 1
],
 "data_set_id": 1,
 "app_name_prefix": "app",
 "env_name_prefix": "env",
 "retain_execution_data": "NO",
 "masking_job_config": {
 "max_memory": 1024,
 "min_memory": 0,
 "description": "Job created by MongoDB Hyperscale Masking",
 "feedback_size": 100000,
 "stream_row_limit": 10000,
 "num_input_streams": 1
 }
}

Parquet Job request:

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 167

The Delimited FIles job does not require the source_configs and target_configs objects.

{
 "name": "job_1",
 "masking_engine_ids": [
 1
],
 "data_set_id": 1,
 "app_name_prefix": "app",
 "env_name_prefix": "env",
 "retain_execution_data": "NO",
 "masking_job_config": {
 "max_memory": 1024,
 "min_memory": 0,
 "description": "Job created by Hyperscale Masking",
 "feedback_size": 100000,
 "stream_row_limit": 10000,
 "num_input_streams": 1
 }
}

Parquet Job response:

{
 "id": 1,
 "name": "job_1",
 "masking_engine_ids": [
 1
],
 "data_set_id": 1,
 "app_name_prefix": "app",
 "env_name_prefix": "env",
 "retain_execution_data": "NO",
 "masking_job_config": {
 "max_memory": 1024,
 "min_memory": 0,
 "description": "Job created by Hyperscale Masking",
 "feedback_size": 100000,
 "stream_row_limit": 10000,
 "num_input_streams": 1
 }
}

JobExecution API
POST /executions (Create an execution of a Hyperscale job)

Request:

{

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 168

 "job_id": 1
}

Response: (Immediate response will be like below. Realtime response can be fetched
using GET /executions/{execution_id} endpoint)

{
 "id": 124,
 "job_id": 38,
 "status": "RUNNING",
 "create_time": "2023-05-04T12:43:03.444964",
 "tasks": [
 {
 "name": "Unload"
 },
 {
 "name": "Masking"
 },
 {
 "name": "Load"
 },
 {
 "name": "Post Load"
 }
]
}

GET /executions/{id}/summary (Returns the job execution by execution id in summarized format)

{
 "id": 72,
 "job_id": 5,
 "status": "SUCCEEDED",
 "create_time": "2022-12-18T13:38:43.722917",
 "end_time": "2022-12-18T13:43:16.554603",
 "total_objects": 4,
 "total_rows": 16,
 "tasks": [
 {
 "name": "Unload",
 "status": "SUCCEEDED",
 "start_time": "2022-12-18T13:38:44.184296",
 "end_time": "2022-12-18T13:38:54.972883",
 "received_objects": 4,
 "succeeded_objects": 4,
 "failed_objects": 0,
 "processing_objects": 0,
 "processed_rows": 16,
 "total_rows": 16
 },
 {
 "name": "Masking",

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 169

 "status": "SUCCEEDED",
 "start_time": "2022-12-18T13:38:51.979725",
 "end_time": "2022-12-18T13:42:58.569202",
 "received_objects": 4,
 "succeeded_objects": 4,
 "failed_objects": 0,
 "processing_objects": 0,
 "processed_rows": 16,
 "total_rows": 16
 },
 {
 "name": "Load",
 "status": "SUCCEEDED",
 "start_time": "2022-12-18T13:40:39.350857",
 "end_time": "2022-12-18T13:43:12.966492",
 "received_objects": 4,
 "succeeded_objects": 4,
 "failed_objects": 0,
 "processing_objects": 0,
 "processed_rows": 16,
 "total_rows": 16
 },
 {
 "name": "Post Load",
 "status": "SUCCEEDED",
 "start_time": "2022-12-18T13:43:12.981490",
 "end_time": "2022-12-18T13:43:15.764366",
 "metadata": [
 {
 "type": "Constraints",
 "total": 20,
 "processed": 20,
 "status": "SUCCESS",
 "start_time": "2022-12-18T13:43:12.981490",
 "end_time": "2022-12-18T13:43:15.764366"
 },
 {
 "type": "Indexes",
 "total": 10,
 "processed": 10,
 "status": "SUCCESS",
 "start_time": "2022-12-18T13:43:12.981490",
 "end_time": "2022-12-18T13:43:15.764366"
 },
 {
 "type": "Triggers",
 "total": 5,
 "processed": 5,
 "status": "SUCCESS",
 "start_time": "2022-12-18T13:43:12.981490",
 "end_time": "2022-12-18T13:43:15.764366"
 }
]

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 170

 }
]
}

GET /executions/{execution_id} (Returns the job execution by execution_id in the detailed format)

Request:

id: 1

Response:

{
 "id": 1,
 "job_id": 1,
 "status": "SUCCEEDED",
 "create_time": "2023-04-26T12:34:38.012768",
 "end_time": "2023-04-26T12:37:32.410297",
 "total_objects": 1,
 "total_rows": 499999,
 "tasks": [
 {
 "name": "Unload",
 "status": "SUCCEEDED",
 "start_time": "2023-04-26T12:34:38.027224",
 "end_time": "2023-04-26T12:34:42.435849",
 "metadata": [
 {
 "source_key": "dbo.test_TEMP",
 "total_rows": 499999,
 "status": "SUCCEEDED",
 "unloaded_rows": 499999
 }
]
 },
 {
 "name": "Masking",
 "status": "SUCCEEDED",
 "start_time": "2023-04-26T12:34:40.420073",
 "end_time": "2023-04-26T12:35:12.423744",
 "metadata": [
 {
 "source_key": "dbo.test_TEMP",
 "total_rows": 499999,
 "status": "SUCCEEDED",
 "masked_rows": 499999
 }
]
 },

The execution response may initially return an approximate number of rows at the start of execution and
provide actual values later during the execution.



Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 171

 {
 "name": "Load",
 "status": "SUCCEEDED",
 "start_time": "2023-04-26T12:37:08.482240",
 "end_time": "2023-04-26T12:37:22.417561",
 "metadata": [
 {
 "source_key": "dbo.test_TEMP",
 "total_rows": 499999,
 "status": "SUCCEEDED",
 "loaded_rows": 499999
 }
]
 },
 {
 "name": "Post Load",
 "status": "SUCCEEDED",
 "start_time": "2023-04-26T12:37:22.426813",
 "end_time": "2023-04-26T12:37:22.814583",
 "metadata": [
 {
 "status": "SUCCEEDED",
 "table_set": [
 "test_TEMP_Result"
],
 "object_details": [
 {
 "type": "Triggers",
 "total": 2,
 "processed": 2,
 "status": "SUCCEEDED",
 "start_time": "2023-04-26T12:35:10.325948",
 "end_time": "2023-04-26T12:37:22.804792"
 },
 {
 "type": "Indexes",
 "total": 4,
 "processed": 4,
 "status": "SUCCEEDED",
 "start_time": "2023-04-26T12:35:10.325948",
 "end_time": "2023-04-26T12:37:22.804792"
 },
 {
 "type": "Constraints",
 "total": 5,
 "processed": 5,
 "status": "SUCCEEDED",
 "start_time": "2023-04-26T12:35:10.325948",
 "end_time": "2023-04-26T12:37:22.804792"
 }
]
 }
]

Hyperscale Compliance – Hyperscale Compliance Home

How to setup a Hyperscale Compliance job– 172

•

•

 }
]
}

Only in case of execution failure, the below API can be used to restart the execution: PUT /executions/

{execution_id}/restart (Restart a failed execution).

The below API can be used only for manually cleaning up the execution: DELETE /executions/

{execution_id} (Clean up the execution).

Hyperscale Compliance – Hyperscale Compliance Home

How to Sync a Hyperscale Job– 173

1.

2.

How to Sync a Hyperscale Job

How to import a Job from Continuous Compliance Engine
The POST /import endpoint is useful when you have a database masking job setup on a Continuous
Compliance Engine and need to use the same masking inventory in a Hyperscale job. You can export the masking
job details from a Continuous Compliance Engine and import them into the Hyperscale Compliance Orchestrator
using the below steps.

Export the masking job from the Delphix Continuous Compliance Engine that needs to be imported on the
Hyperscale Engine for the dataset preparation. For more information about exporting a job, refer to Export
the job.
After the job is exported, you can make a request on the Hyperscale Engine with the new /import API

endpoint to upload the response blob along with mount_filesystem_id (Required) and

data_info_settings (Optional) for the source and target dataset. This data_info_settings will
be applicable to all the data_info objects in the dataset. For more information, refer to the /import API page.

The following is an example of the request blob .

{
 "exportResponseMetadata": {
 "exportHost": "1.1.1.1",
 "exportDate": "Tue Sep 13 12:55:31 UTC 2022",
 "requestedObjectList": [
 {
 "objectIdentifier": {
 "id": 3
 },
 "objectType": "MASKING_JOB",
 "revisionHash": "2873bd283bd"
 }
],
 "exportedObjectList": [
 {
 "objectIdentifier": {
 "id": 2
 },
 "objectType": "SOURCE_DATABASE_CONNECTOR",
 "revisionHash": "8723bd8273b"
 },
 {
 "objectIdentifier": {
 "id": 4
 },
 "objectType": "DATABASE_CONNECTOR",
 "revisionHash": "273db2738vd"
 },
 {
 "objectIdentifier": {
 "id": 4

https://maskingdocs.delphix.com/Managing_Multiple_Engines_for_Masking/Example_User_Workflow/#1-export-the-job
https://hyperscale-compliance.delphix.com/4.0.0/hyperscaleComplianceApiEndpoints/4_0_0_hyperscaleComplianceApiEndpoints.html

Hyperscale Compliance – Hyperscale Compliance Home

How to Sync a Hyperscale Job– 174

 },
 "objectType": "DATABASE_RULESET",
 "revisionHash": "f8c0997c804c"
 }
]
 },
 "blob": "983nd0239nd923ndf023nfd2p3nd923dn239dn293fn293fnb2",
 "signature": "923nd023nd02",
 "publicKey": "f203fn23fn203[fn230[f",
 "mount_filesystem_id": 1,
 "data_info_settings": [
 {
 "prop_key": "unload_split",
 "prop_value": "2",
 "apply_to": "SOURCE"
 },
 {
 "prop_key": "stream_size",
 "prop_value": "65536",
 "apply_to": "TARGET"
 }
]
}

3. The Hyperscale Engine will then process the required data object from the sync bundle and prepare the
connector and data objects that are required for the hyperscale job creation.

4. The Hyperscale Engine will provide the data object identifier that can be further used as it is (after updating the
passwords of the associated connector) to create a hyperscale job or if needed, can also be updated before
configuring a job. The following is an example of the response .

{
 "data_set_id": id
}

1.

2.

3.

4.

After successful import, you must provide the password for connectors manually. To do so, perform the
following steps:

Get newly created data-set using GET /data-sets/{dataSetId} to get the newly created
connector-info id.
Copy the connector-id and call the GET /connector-info/{connectorInfoId} and
copy the response.
Use the PUT /connector-info/{connectorInfoId} and in the body, paste the GET
response and add the new password field with password value in the source and target to update
the connector password.
If the bundle is passphrase protected, then the same needs to be provided while importing the
bundle in the API header as “passphrase”. For more information about how to export passphrase
encrypt bundle, refer to the Export the object section.



https://maskingdocs.delphix.com/Managing_Multiple_Engines_for_Masking/Example_User_Workflow/#3-export-the-object

Hyperscale Compliance – Hyperscale Compliance Home

How to Sync a Hyperscale Job– 175

1.

2.

How to re-import a Job from Continuous Compliance Engine
To update the existing dataset on the Hyperscale Compliance Orchestrator with a refreshed ruleset from the
Continuous Compliance Engine, use PUT /import/{datasetId} endpoint.

Export the masking job from the Delphix Continuous Compliance Engine having refreshed ruleset and re-import the
exported bundle into Hyperscale Compliance Orchestrator by providing the existing dataSetId.

Script to automatically import/re-import a Job from Continuous
Compliance Engine
Hyperscale provides a utility script to automate the steps of syncing masking jobs inventory from Continuous
Compliance Engine into the connector and dataset info of Hyperscale Compliance Orchestrator. This utility script is
bundled with the release tar file and can be found at <deployment_directory>/tools/import-

scripts/ .

How to sync global settings from a Delphix Continuous Compliance
Engine
The POST /sync-compliance-engines endpoint is useful when you have global objects set up on a
Continuous Compliance Engine and need to use the same global-objects-like algorithms in a Hyperscale job. You
can export the details of the global object from a Continuous Compliance Engine and import them into the
Hyperscale Compliance Orchestrator using the below steps.

Export the global settings from the Delphix Continuous Compliance Engine that needs to be imported on the
Hyperscale Clustered Continuous Compliance Engines. For more information about exporting global
settings, refer to Syncing all Global Objects.
Once the bundle is exported, you can make a request on the Hyperscale Engine with the new /sync-

compliance-engines endpoint to upload the response blob along with a list of Hyperscale Clusters
Compliance Engines. For more information, refer to the /sync-compliance-engines API page. The following is
an example of the request blob .

{
 "exportResponseMetadata": {
 "exportHost": "1.1.1.1",
 "exportDate": "Tue Sep 13 12:55:31 UTC 2022",
 "requestedObjectList": [
 {
 "objectIdentifier": {
 "id": "global"
 },
 "objectType": "GLOBAL_OBJECT",
 "revisionHash": "897weqwj76"
 }

The data_info_settings provided in this update request will only be applicable to objects(in the
export bundle) which are not present in the existing dataset on Hyperscale Orchestrator.



https://maskingdocs.delphix.com/Managing_Multiple_Engines_for_Masking/Example_User_Workflow/#syncing-all-global-objects
https://hyperscale-compliance.delphix.com/4.0.0/hyperscaleComplianceApiEndpoints/4_0_0_hyperscaleComplianceApiEndpoints.html

Hyperscale Compliance – Hyperscale Compliance Home

How to Sync a Hyperscale Job– 176

1.

2.
3.

],
 "exportedObjectList": [
 {
 "objectIdentifier": {
 "id": 12
 },
 "objectType": "PROFILE_EXPRESSION",
 "revisionHash": "7dc67asch8a"
 },
 {
 "objectIdentifier": {
 "id": "BIOMETRIC"
 },
 "objectType": "DOMAIN",
 "revisionHash": "7edb8ewbd8w"
 },
 {
 "objectIdentifier": {
 "algorithmName": "dlpx-core:Email SL"
 },
 "objectType": "USER_ALGORITHM",
 "revisionHash": "87h823d23d23"
 }
]
 },
 "blob": "39fdn23d9834fn3948f348fbw3pd9234nf9p4hf89",
 "signature": "7823hd823bd8",
 "publicKey": "892d3un293dn2p39db8283",
 "compliance_engine_ids": [
 1,
 2
]
}

Limitations
Hyperscale Job Sync feature has the following limitations:

The default maximum supported size for syncing a document or request is 50 MB. You have the option to
customize this by mounting a custom nginx.conf under the volumes of the proxy service in the

docker-compose.yaml file and specify client_max_body_size with the new value. For more
information, refer to Custom Configuration.
Pre and post-script import from the Continuous Compliance Engine to Hyperscale Engine is not supported.
Import of Kerberos and Custom JDBC drivers connector-based making job is not supported.

1.

2.

After import, if Hyperscale Clustered Continues Compliance Engines already have same objects
with same id or properties, then those objects will be overwritten.
If the bundle is passphrase protected, then the same needs to be provided while importing the
bundle in the header as “passphrase”. For more information about how to export passphrase
encrypt bundle, refer to the Export the object section.



https://nginx.org/en/docs/http/ngx_http_core_module.html#client_max_body_size
https://maskingdocs.delphix.com/Managing_Multiple_Engines_for_Masking/Example_User_Workflow/#3-export-the-object

Hyperscale Compliance – Hyperscale Compliance Home

How to cancel a Hyperscale job– 177

1.
2.
3.

How to cancel a Hyperscale job
To cancel a Hyperscale Job while the execution is running, the /executions/{id}/cancel endpoint of

JobExecution API can be used. Here {id} is the Hyperscale Execution Id that needs to be cancelled.

Hyperscale Job cancellation is an async process. The progress of Job cancellation can be tracked by checking the
Execution Status using GET /execution/{id}/summary API endpoint. As the cancellation process starts for

a Hyperscale execution, the Execution Status becomes CANCEL_INITIATED . Whenever the cancellation process

completes for the Execution, the Execution Status gets updated to CANCELLED .

During cancellation, the Hyperscale application:

Stops the processes running on the Hyperscale Orchestrator with respect to that Execution.
Closes the database connections made with the target database.
Cancels the Masking Jobs running on the Continuous Compliance Engines and waits for their cancellation to
complete before marking Hyperscale Execution as CANCELLED.

Hyperscale doesn’t stop any running processes on the target database. Hyperscale Job cancellation might
leave the target database in an inconsistent state.



Hyperscale Compliance – Hyperscale Compliance Home

Configuration settings– 178

Configuration settings

The following table lists the Hyperscale Compliance properties with their default values.

Commonly used properties

Group Property name Type Description Default
value

Controller
Service

API_KEY_CREA

TE

Boolean This property is by default
uncommented to have the container
create a new API key and print it in the
logs when starting. Since the value is in
the logs, this API key should only be
used to bootstrap the creation of other
- more secure - API keys and be
discarded.
Comment it once the bootstrap key is
available.

true

LOG_LEVEL_CO

NTROLLER_SERV

ICE

Log Level Hyperscale logging level. This
configuration controls the logging level
of Hyperscale specific packages. This
log level can be increased if Hyperscale
service specific actions needs to be
monitored closely.
NOTE: It is recommended to keep this
log level to INFO. Increasing the log
level can impact application’s
performance.

INFO

1.

2.

3.

4.
5.

Possible values of Configuration Settings having Type “Log Level” are TRACE, DEBUG, INFO, WARN,
ERROR, FATAL, or OFF.
Commonly used properties can be configured in the .env file. The other properties must be

configured in the docker-compose.yaml under the respective service environment.

If you define property values in .env and docker-compose file both, then values from

docker-compose will take precedence.
The dataset date format should be the same as the environment variable date format value.
In one dataset, all the inventories should use the same date format for all date formats.



Hyperscale Compliance – Hyperscale Compliance Home

Configuration settings– 179

Group Property name Type Description Default
value

API_VERSION_

COMPATIBILITY

_STRICT_CHECK

Boolean These properties are used to check the
version compatibility. Setting this as
true will enable strict comparison of
API versions of different services. In
strict comparison, the complete
version i.e x.y.z is compared while in
other case when this property is set to
false, only major version(x out of x.y.z)
of APIs will be compared.

false

EXECUTION_ST

ATUS_POLL_DUR

ATION

Milli-
seconds

Time duration in which execution
status is collected from different
services

120000

LOAD_SERVICE

_REQUIRE_POST

_LOAD

Boolean Set if the Post Load step needs to be
executed.

true

SKIP.UNLOAD.

SPLIT.COUNT.V

ALIDATION

Boolean Skip ‘split count’ and ‘number of
unload files generated’ validation,
while determining execution status
Note: For connector-specific values,
see Data Source Support.

false

SKIP.LOAD.SP

LIT.COUNT.VAL

IDATION

Boolean Skip ‘split count’ and ‘number of
masked files loaded by loaded’
validation, while determining
execution status
Note: For connector-specific values,
see Data Source Support.

false

CANCEL_STATU

S_POLL_DURATI

ON

Milli-
seconds

Time duration in which execution
status is collected from different
services for the CANCEL_INITIATED
executions.

60000

VALIDATE_UNL

OAD_ROW_COUNT

_FOR_STATUS

Boolean Flag to control if row counts should be
considered as a factor to decide the
completion status of the unload step of
an object.

true

http://delphixdocs.atlassian.net/hyperscale-compliance-9-0-0/docs/data-source-support-3
http://delphixdocs.atlassian.net/hyperscale-compliance-9-0-0/docs/data-source-support-3

Hyperscale Compliance – Hyperscale Compliance Home

Configuration settings– 180

Group Property name Type Description Default
value

VALIDATE_MAS

KED_ROW_COUNT

_FOR_STATUS

Boolean Flag to control if row counts should be
considered as a factor to decide the
completion status of the masking step
of an object.

true

VALIDATE_LOA

D_ROW_COUNT_F

OR_STATUS

Boolean Flag to control if row counts should be
considered as a factor to decide the
completion status of the load step of
an object.

true

DISPLAY_BYTE

S_INFO_IN_STA

TUS

Boolean Flag to control the display of number
of bytes in Execution Status response

false

DISPLAY_ROW_

COUNT_IN_STAT

US

Boolean Flag to control the display of number
of rows in Execution Status response

true

Unload Service LOG_LEVEL_UN

LOAD_SERVICE

Log Level Hyperscale logging level. This
configuration controls the logging level
of Hyperscale specific packages. This
log level can be increased if Hyperscale
service specific actions needs to be
monitored closely.
NOTE: It is recommended to keep this
log level to INFO. Increasing the log
level can impact application’s
performance.

INFO

UNLOAD_FETCH

_ROWS

Number Number of rows to be fetched from the
database at a time.

10000

CONCURRENT_E

XPORT_LIMIT

Number Number of concurrent mongoexport
processes to be spawned.

10

Hyperscale Compliance – Hyperscale Compliance Home

Configuration settings– 181

Group Property name Type Description Default
value

Masking Service LOG_LEVEL_MA

SKING_SERVICE

Log Level Hyperscale logging level. This
configuration controls the logging level
of Hyperscale specific packages. This
log level can be increased if Hyperscale
service specific actions needs to be
monitored closely.
NOTE: It is recommended to keep this
log level to INFO. Increasing the log
level can impact application’s
performance.

INFO

INTELLIGENT_

LOADBALANCE_E

NABLED

Boolean Set this to false if need to enable round
robin load balancing in place of
intelligent load balancing.

true

Load Service LOG_LEVEL_LO

AD_SERVICE

Log Level Hyperscale logging level. This
configuration controls the logging level
of Hyperscale specific packages. This
log level can be increased if Hyperscale
service specific actions need to be
monitored closely.
NOTE: It is recommended to keep this
log level to INFO. Increasing the log
level can impact application’s
performance.

INFO

SQLLDR_BLOB_

CLOB_CHAR_LEN

GTH

Number SQLLDR properties 20000

Other properties

Group Property name Type Description Default
value

Controller Service SOURCE_KEY_F

IELD_NAMES

String Dataset configuration. These fields/
columns are used to uniquely identify
source data.

schema_na
me,
table_name

Hyperscale Compliance – Hyperscale Compliance Home

Configuration settings– 182

Group Property name Type Description Default
value

LOGGING_LEVE

L_ROOT

Log Level Logging configuration. This spring boot
configuration controls the logging of all
the packages/libraries getting used in
application.
NOTE: Increasing this Log Level will
produce too many logs. It is
recommended to keep this log level to
WARN or below.

WARN

LOGGING_FILE

_NAME 1

String Log file location & name /opt/
delphix/
logs/
hyperscale-
controller.lo
g

LOGGING_PATT

ERN_FILE

String Logging pattern for file %d{dd-

MM-yyyy

HH:mm:ss

.SSS} \

[%thread

\]

%-5level

%logger{

36}.%M -

%msg%n

LOGGING_PATT

ERN_CONSOLE

String Logging pattern for console %d{dd-

MM-yyyy

HH:mm:ss

.SSS} \

[%thread

\]

%-5level

%logger{

36}.%M -

%msg%n

Hyperscale Compliance – Hyperscale Compliance Home

Configuration settings– 183

Group Property name Type Description Default
value

LOGGING_PATT

ERN_ROLLINGFI

LENAME 1

String Archived file location & name /opt/

delphix/

logs/

archived

/

hypersca

le-

controll

er-

%d{yyyy-

MM-dd}.

%i.log

LOGGING_FILE

_MAXSIZE

File Size
(String)

Max individual file size 5MB

LOGGING_FILE

_MAXHISTORY

Number
of Days

History in days (i.e. keep 15 days’ worth
of history capped at 5GB total size)

15

LOGGING_FILE

_TOTALCAPSIZE

File Size
(String)

Max limit the combined size of log
archives

5GB

LOGGING_LEVE

L_ORG_SPRINGF

RAMEWORK_WEB_

FILTER_COMMON

SREQUESTLOGGI

NGFILTER

Log Level This configuration controls the logging
information of the HTTP requests
received by Hyperscale. This is by
default set to DEBUG level for logging
request URIs of the Incoming Requests.

DEBUG

API_VERSION_

COMPATIBILITY

_RETRY_COUNT

Number These properties are used to check the
version compatibility. Number of times
to retry the comparison if the services
are not compatible.

3

Hyperscale Compliance – Hyperscale Compliance Home

Configuration settings– 184

Group Property name Type Description Default
value

API_VERSION_

COMPATIBILITY

_RETRY_WAIT_T

IME

Time in
milli-
seconds

These properties are used to check the
version compatibility. Time to wait
before next retry if the services are not
compatible.

10000

Unload Service LOGGING_LEVE

L_ROOT

Log Level Logging configuration. This spring boot
configuration controls the logging of all
the packages/libraries getting used in
application.
NOTE: Increasing this Log Level will
produce too many logs. It is
recommended to keep this log level to
WARN or below.

WARN

LOGGING_FILE

_NAME 1

String Log file location & name /opt/
delphix/
logs/
hyperscale-
unload.log

LOGGING_PATT

ERN_FILE

String Logging pattern for file %d{dd-

MM-yyyy

HH:mm:ss

.SSS} \

[%thread

\]

%-5level

%logger{

36}.%M -

%msg%n

Hyperscale Compliance – Hyperscale Compliance Home

Configuration settings– 185

Group Property name Type Description Default
value

LOGGING_PATT

ERN_CONSOLE

String Logging pattern for console %d{dd-

MM-yyyy

HH:mm:ss

.SSS} \

[%thread

\]

%-5level

%logger{

36}.%M -

%msg%n

LOGGING_PATT

ERN_ROLLINGFI

LENAME 1

String Archived file location & name /opt/

delphix/

logs/

archived

/

hypersca

le-

unload-

%d{yyyy-

MM-dd}.

%i.log

LOGGING_FILE

_MAXSIZE

File Size
in String

Max individual file size 5MB

LOGGING_FILE

_MAXHISTORY

Number
of Days

History in days (i.e. keep 15 days’ worth
of history capped at 5GB total size)

15

LOGGING_FILE

_TOTALSIZECAP

File Size
in String

Max limit the combined size of log
archives

5GB

Hyperscale Compliance – Hyperscale Compliance Home

Configuration settings– 186

Group Property name Type Description Default
value

LOGGING_LEVE

L_ORG_SPRINGF

RAMEWORK_WEB_

FILTER_COMMO

NSREQUESTLOGG

INGFILTER

Log Level This configuration controls the logging
information of the HTTP requests
received by Hyperscale. This is by
default set to DEBUG level for logging
request URIs of the Incoming Requests.

DEBUG

SPARK.DATE.T

IMESTAMP.FORM

AT

String Spark date and timestamp format for
unload.

This property is only applicable for MS
SQL unload image

yyyy-MM-dd
HH:mm:ss.S
SS

SPARK.SMALL.

DATE.TIMESTAM

P.FORMAT

String Spark small date and timestamp
format for unload.

This property is only applicable for MS
SQL unload image

yyyy-MM-dd
HH:mm

UNLOAD.CONF.

DISABLE.REPLI

CATION

Boolean If set to true, disable database
replication for source database.

This property is only applicable for MS
SQL unload image

true

UNLOAD.SPARK

.DRIVER.MEMOR

Y

Integer Spark driver memory to be consumed
for unload. This property is only
applicable for MS SQL unload image

90% of
available
memory

UNLOAD.SPARK

.DRIVER.CORES

Integer Spark cores to be consumed for
unload. This property is only applicable
for MS SQL unload image

90% of
available
memory

Hyperscale Compliance – Hyperscale Compliance Home

Configuration settings– 187

Group Property name Type Description Default
value

UNLOAD_HIKAR

I_MAX_LIFE_TI

ME

Integer Value in Milliseconds, Please follow
maxLifetime from Hikari
Documentation.

1800000 (30
min)

UNLOAD_HIKAR

I_KEEP_ALIVE_

TIME

Integer Value in Milliseconds, Please follow
keepaliveTime from Hikari
Documentation.

300000 (5
min)

FILE_DELIMIT

ER

Char Column value delimiter character.This
configuration for internal use to have
data from DB tables into files. But can
be updated in specific scenario

Note: Use unicode char sequence for
Quotation Marks characters (i.e. \u0022
unicode of double-quote) & Non-ASCII
characters are NOT allowed

, (Single-
Quote)

FILE_ENCLOSU

RE

Char This configuration for internal use to
have data from DB tables into files. But
can be updated in specific scenario (i.e.
XML data masking)

Note: Use unicode char sequence for
Quotation Marks characters (i.e. \u0022
unicode of double-quote) & Non-ASCII
characters are NOT allowed

“ (Double-
Quote)

FILE_ESCAPE_

ENCLOSURE

Char This configuration for internal use to
have data from DB tables into files. But
can be updated in specific scenario (i.e.
XML data masking)

Note: Use unicode char sequence for
Quotation Marks characters (i.e. \u0022
unicode of double-quote) & Non-ASCII
characters are NOT allowed

“ (Double-
Quote)

https://github.com/brettwooldridge/HikariCP
https://github.com/brettwooldridge/HikariCP

Hyperscale Compliance – Hyperscale Compliance Home

Configuration settings– 188

Group Property name Type Description Default
value

Masking Service LOGGING_LEVE

L_ROOT

Log Level Logging configuration. This spring boot
configuration controls the logging of all
the packages/libraries getting used in
application.
NOTE: Increasing this Log Level will
produce too many logs. It is
recommended to keep this log level to
WARN or below.

WARN

LOGGING_FILE

_NAME 1

String Log file location & name /opt/
delphix/
logs/
hyperscale.l
og

LOGGING_PATT

ERN_FILE

String Logging pattern for file %d{dd-

MM-yyyy

HH:mm:ss

.SSS} \

[%thread

\]

%-5level

%logger{

36}.%M -

%msg%n

LOGGING_PATT

ERN_CONSOLE

String Logging pattern for console %d{dd-

MM-yyyy

HH:mm:ss

.SSS} \

[%thread

\]

%-5level

%logger{

36}.%M -

%msg%n

Hyperscale Compliance – Hyperscale Compliance Home

Configuration settings– 189

Group Property name Type Description Default
value

LOGGING_PATT

ERN_ROLLINGFI

LENAME 1

String Archived file location & name /opt/

delphix/

logs/

archived

/

hypersca

le-

%d{yyyy-

MM-dd}.

%i.log

LOGGING_FILE

_MAXSIZE

File Size
in String

Max individual file size 5MB

LOGGING_FILE

_MAXHISTORY

Number
of Days

History in days (i.e. keep 15 days’ worth
of history capped at 5GB total size)

15

LOGGING_FILE

_TOTALSIZECAP

File Size
in String

Max limit the combined size of log
archives

5GB

LOGGING_LEVE

L_ORG_SPRINGF

RAMEWORK_WEB_

FILTER_COMMON

SREQUESTLOGGI

NGFILTER

Log Level This configuration controls the logging
information of the HTTP requests
received by Hyperscale. This is by
default set to DEBUG level for logging
request URIs of the Incoming Requests.

DEBUG

Hyperscale Compliance – Hyperscale Compliance Home

Configuration settings– 190

Group Property name Type Description Default
value

MASKING_ILB_

QUEUEINGFACTO

R

Float This property, Queueing Factor(QF) can
be used to increase the number of jobs
being assigned to a Continuous
Compliance Engine by the factor
mentioned. (Net jobCapacity of CCE =
CCE’s total jobCapacity * Queueing
Factor). It can be used to increase the
utilization of Continuous Compliance
Engines. Increasing this property value
can lead to jobs getting queued on
Masking Engines.

NOTE: This property is only applicable
if
INTELLIGENT_LOADBALANCE_ENABLE
D is set to true(default value).

1.0

MONITOR_POLL

_DURATION

Time in
seconds

Used to set the frequency with which
Masking Engines will be polled to fetch
job Status

10s

ENGINE_FAILU

RE_POLL_DURAT

ION

Time in
seconds

Incase of Connection/Handshake
issues or unavailability of Masking
Engines, the subjobs on the engine will
be marked as failed after retrying for
this duration.

60s

Load Service SQLLDR_SUCCE

SS_MESSAGE

String Message printed by sqlldr on successful
loading of data.

‘successfully
loaded.’

LOGGING_LEVE

L_ROOT

Log Level Logging configuration. This spring boot
configuration controls the logging of all
the packages/libraries getting used in
application.
NOTE: Increasing this Log Level will
produce too many logs. It is
recommended to keep this log level to
WARN or below.

WARN

LOGGING_LEVE

L_COM_DELPHIX

_MASKING

Log Level Log level for driver support. This
configuration controls the logging level
of the Masking Driver Support package.
This Log Level can be increased when
Driver Support Steps of Load Process
need to be monitored closely.

INFO

Hyperscale Compliance – Hyperscale Compliance Home

Configuration settings– 191

Group Property name Type Description Default
value

LOGGING_FILE

_NAME 1

String Log file location & name /opt/
delphix/
logs/
hyperscale-
load.log

LOGGING_PATT

ERN_FILE

String Logging pattern for file %d{dd-

MM-yyyy

HH:mm:ss

.SSS} \

[%thread

\]

%-5level

%logger{

36}.%M -

%msg%n

LOGGING_PATT

ERN_CONSOLE

String Logging pattern for console %d{dd-

MM-yyyy

HH:mm:ss

.SSS} \

[%thread

\]

%-5level

%logger{

36}.%M -

%msg%n

Hyperscale Compliance – Hyperscale Compliance Home

Configuration settings– 192

Group Property name Type Description Default
value

LOGGING_PATT

ERN_ROLLINGFI

LENAME 1

String Archived file location & name /opt/

delphix/

logs/

archived

/

hypersca

le-load-

%d{yyyy-

MM-dd}.

%i.log

LOGGING_FILE

_MAXSIZE

File Size
in String

Max individual file size 5MB

LOGGING_FILE

_MAXHISTORY

Number
of Days

History in days (i.e. keep 15 days’ worth
of history capped at 5GB total size)

15

LOGGING_FILE

_TOTALSIZECAP

File Size
in String

Max limit the combined size of log
archives

5GB

LOGGING_LEVE

L_ORG_SPRINGF

RAMEWORK_WEB_

FILTER_COMMON

SREQUESTLOGGI

NGFILTER

Log Level This configuration controls the logging
information of the HTTP requests
received by Hyperscale. This is by
default set to DEBUG level for logging
request URIs of the Incoming Requests.

DEBUG

SPARK.DATE.T

IMESTAMP.FORM

AT

String Spark date and timestamp format for
load. This property is only applicable
for MS SQL load image

yyyy-MM-dd
HH:mm:ss.S
SS

Hyperscale Compliance – Hyperscale Compliance Home

Configuration settings– 193

Group Property name Type Description Default
value

SPARK.SMALL.

DATE.TIMESTAM

P.FORMAT

String Spark small date and timestamp
format for load. This property is only
applicable for MS SQL load image

yyyy-MM-dd
HH:mm

LOAD.SPARK.B

ATCH.SIZE

Integer Spark batch size for bulk load. This
property is only applicable for MS SQL
load image

10000

LOAD.SPARK.J

OB.TABLE.LOCK

Boolean Spark job table lock for bulk load. This
property is only applicable for MS SQL
load image

true

LOAD.CONF.DI

SABLE.REPLICA

TION

Boolean If set to true, disable database
replication for target database. This
property is only applicable for MS SQL
load image

true

LOAD.SPARK.D

RIVER.MEMORY

Integer Spark driver memory to be consumed
for load. This property is only
applicable for MS SQL unload image.

90% of
available
memory

LOAD.SPARK.D

RIVER.CORES

Integer Spark cores to be consumed for load.
This property is only applicable for MS
SQL unload image.

90% of
available
processors

LOAD_HIKARI_

MAX_LIFE_TIME

Integer Value in Milliseconds, Please follow
maxLifetime from Hikari
Documentation.

1800000 (30
min)

LOAD_HIKARI_

KEEP_ALIVE_TI

ME

Integer Value in Milliseconds, Please follow
keepaliveTime from Hikari
Documentation.

300000 (5
min)

spark.date.timestamp.format and spark.small.date.timestamp.format values should be the same for MS
SQL load/unload services. Also if masking is applied on the date/timestamp datatype column, the applied
inventory date format should be the same for MS SQL load/unload data format.



https://github.com/brettwooldridge/HikariCP
https://github.com/brettwooldridge/HikariCP

Hyperscale Compliance – Hyperscale Compliance Home

Configuration settings– 194

•

•

For each service, the file path(absolute) configured for logging.file.name and for

logging.pattern.rolling-file-name has to be the same.This path is a path inside the
respective container.
For each service, if the log files(configured through logging.file.name and

logging.pattern.rolling-file-name) need to be accessed outsidethe container,

respective log path has to be mounted by adding volume binding of that path in docker-

compose.yaml for that service.



Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale Compliance API– 195

Hyperscale Compliance API
The Hyperscale Compliance API is organized around REST. Our API has predictable resource-oriented URLs, accepts
form-encoded request bodies, returns JSON-encoded responses, and uses standard HTTP response codes,
authentication, and verbs.

REST

Hyperscale Compliance API is a RESTful API. REST stands for REpresentational State Transfer. A REST API will allow
you to access and manipulate a textual representation of objects and resources using a predefined set of operations
to accomplish various tasks.

JSON

Hyperscale Compliance API uses JSON (JavaScript Object Notation) to ingest and return representations of the
various objects used throughout various operations. JSON is a standard format and, as such, has many tools
available to help with creating and parsing the request and response payloads, respectively. Here are some UNIX
tools that can be used to parse JSON - Parsing JSON with Unix Tools. That being said, this is only the tip of the
iceberg when it comes to JSON parsing and the reader is encouraged to use their method of choice.

API Client
The various operations and objects used to interact with APIs are defined in a specification document. This allows
us to utilize various tooling to ingest that specification to generate documentation and an API Client, which can be
used to generate cURL commands for all operations.

Accessing the Hyperscale Compliance API
For accessing the Hyperscale Compliance API, see Accessing the Hyperscale Compliance API.

View the API reference
To view the API client documentation, a downloadable .html file is available below.

18_0_0_0_hyperscaleCompl…

https://stackoverflow.com/questions/1955505/parsing-json-with-unix-tools
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=105021886&linkCreation=true&spaceKey=HC&title=%2818.0.0%29+Accessing+the+Hyperscale+Compliance+API

Hyperscale Compliance – Hyperscale Compliance Home

Cleaning up execution data– 196

1.

2.

3.

1.

Cleaning up execution data
As part of the Hyperscale execution run some data files and objects are created which should be cleaned on the
execution completion. These files and objects are:

The system will create data files (unload service) and masked files (masking service) on the file server. As the
data size can be large (2 times of source data) and include sensitive information, therefore, it is important to
clean up this data.
The system will create multiple data objects like connectors, rulesets, file formats, jobs, etc on the
respective Continuous Compliance Engines. Objects created by Hyperscale should be cleaned once
Hyperscale execution is complete.
Additionally unload service, masking service, and load service will also store transient internal data for the
execution while running it. This data is not required once execution is completed.

Following are the three ways this data will be/can be cleaned.

Using retain_execution_data
While setting up a Hyperscale Job (POST /jobs), you can set the value for
retain_execution_dataproperty to the intimate system when it should clean up data automatically based on
the table below.

EXECUTION_STATUS RETAIN_EXECUTION_DATA CLEAN UP AUTOMATICALLY?

NA(SUCCESS/FAILED/CANCELED) NO YES

SUCCESS ON_ERROR YES

FAILED ON_ERROR NO

CANCELED ON_ERROR NO

NA(SUCCESS/FAILED/CANCELED) ALWAYS NO

2. Manual clean up
Hyperscale exposes a delete API (DELETE /executions/{id}) to manually clean up data for execution if it's
not already cleaned.

3. Start a new execution
While starting a new execution, Hyperscale will first validate if the previous execution data is cleaned. If it’s not
cleaned, then Hyperscale will trigger cleanup before starting new execution.

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale profilers– 197

•

Hyperscale profilers
This section covers the following topics:

Parquet profiler

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale profilers– 198

Parquet profiler
Identifying the schema of parquet files and aligning columns with the suitable masking algorithms from the Delphix
Compliance Engine poses a challenge. Moreover, when dealing with a large number of files (similar/varied) in the
source location, establishing a Hyperscale Parquet Connector dataset becomes challenging. The Parquet Profiler
serves as a solution to address this complexity.

The main objective of the Parquet Profiler is to analyze the source parquet files and create a Hyperscale Parquet
Connector dataset, essentially helping in creating a masking inventory for the source data.

1 Hyperscale Parquet Profiler - Deployment Architecture

The Parquet Profiler is tightly coupled with the Hyperscale Parquet Connector and cannot be used for
other connectors.

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale profilers– 199

1.
2.

3.

•

•

•

•

•

4.

1.

2.

3.

Installation and setup (Parquet profiler)

Pre-requisites
Download the latest version of the Parquet Profiler from the Delphix download page.
Ensure that the host running the profiler has docker-compose installed (the profiler has been tested

only in the docker-compose environment).
Currently, the profiler supports AWS S3 buckets as the source locations. We need to ensure that the profiler
has access to the source location (similar to how access was set up for the Hyperscale Parquet Connector).
You can use the following authentication mechanisms:

Attaching the EC2 host running the profiler with an AWS IAM role which has access to the source S3
buckets.

IAM Roles are designed for applications to securely make AWS-API requests from EC2
instances, without the necessity to manage the security credentials that the applications use.
Using the AWS console UI or AWS CLI, attach the IAM role to the EC2 instance running the
Hyperscale services. To know more, check the AWS Documentation.

Generating an AWS Access Key ID & AWS Secret Acess Key pair for an AWS Role which has the
privileges to access the source S3 bucket.

Access keys are long-term credentials generated for an IAM user or role. These keys can be for
programmatic requests to the AWS CLI or AWS API (directly or using the AWS SDK). For more
information, refer to the AWS Documentation.

Set up the Hyperscale Parquet Connector and add the required MountFileSystems and ConnectorInfo
details.

Procedure
Untar the profiler downloaded from Delphix’s download page. It should contain the docker images for the
profiler and the docker-compose.yaml file to run the profiler.

tar -xf parquet-profler.tar.gz

Load the delphix-hyperscale-profiler-api and delphix-hyperscale-profiler-

backend docker images.

docker load --input delphix-hyperscale-parquet-profiler-api.tar
docker load --input delphix-hyperscale-parquet-profiler-backend.tar

Edit the docker-compose YAML file to map the controller end-point for the delphix-hyperscale-

profiler-api to interact with.

services:
 ...
 profiler-api-service:
 ...
 environment:

https://download.delphix.com/folder/2224/Delphix%20Product%20Releases/Hyperscale%20Compliance
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://hyperscalemasking.delphix.com/docs/latest/deployment
https://hyperscalemasking.delphix.com/docs/latest/how-to-setup-a-hyperscale-compliance-job#id-(15.0.0)HowtosetupaHyperscaleCompliancejob-MountFileSystemsAPI
https://hyperscalemasking.delphix.com/docs/latest/how-to-setup-a-hyperscale-compliance-job#id-(15.0.0)HowtosetupaHyperscaleCompliancejob-ConnectorInfoAPI

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale profilers– 200

4.

5.

6.

 ...
 - CONTROLLER_URL=https://<controller-ip>/api

[Optional] You can provide the AWS Access keys as environment variables as well, it will be considered as the
default credentials to access the source S3 location.

services:
 ...
 profiler-api-service:
 ...
 environment:
 ...
 - AWS_ACCESS_KEY_ID=<access_key_id>
 - AWS_SECRET_ACCESS_KEY=<secret_access_key>
 - AWS_DEFAULT_REGION=<region>

Start the profiler service.

docker-compose up -d

Access the profiler swagger UI at http://<host-ip>:8888 .

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale profilers– 201

1.
•

2.

3.

Executing a profiler task

Perform the following steps to execute a profiler task
Add the authorization key generated for the controller service into the profiler UI.

Click on the Authorize button and then add the key as follows, "apk <authorization-key>"

Validate all the configured connectors on the Hyperscale controller using the /connector-info GET API
endpoint.
If the connector-info contains the AWS credentials, then the response will have the AWS credentials hidden.
Example: /connector-info response with AWS credentials:

[
{
 "source": {
 "type": "AWS",
 "properties": {
 "server": "S3",
 "path": "s3_bucket_source/sub_folder",
 "aws_region": "us-east-1",
 "aws_access_key_id": "AKIA********",
 "aws_secret_access_key": "x2IX********",
 "aws_role_arn": "56436882398"
 }
 },
 "target": {
 "type": "AWS",
 "properties": {
 "server": "S3",
 "path": "s3_bucket_target/sub_folder",
 "aws_region": "us-east-1",
 "aws_access_key_id": "AKIA********",
 "aws_secret_access_key": "x2IX********",
 "aws_role_arn": "56436882398"
 }
 }
}
]

As the credentials are masked, the profiler will need the credentials independently (in case the IAM role-
based authentication is not used or the AWS credentials are not set using the environment variables).
Use the /source-credentials/{connectorId} post API endpoint to add the credentials mapped
to the connector ID received from the controller.
POST /source-credentials/{connectorId} - Request JSON

{
 "aws_access_key_id": "AKIAJSJDFJSBSG",
 "aws_secret_access_key": "x2IXHFKDjskdnmldf&kksdfh%jsdf"
}

https://hyperscalemasking.delphix.com/docs/latest/accessing-the-hyperscale-compliance-api

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale profilers– 202

4.

5.

POST /source-credentials/{connectorId} - Response JSON

{
 "connector_id": 1,
 "aws_access_key_id": "AKIA********",
 "aws_secret_access_key": "x2IX********"
}

Validate all the mount-filesystems configured in the controller using the /mount-filesystems API
endpoint.
The profile sets are essentially a list of all masking algorithms mapped to domain manes which the profiler
can assign to columns. No default profile set is created when starting the Parquet Profiler for the first time.
To create a default profile set, hit the API endpoint /profile-sets . There should now be a default
profile set with ID 1.
GET /profile-sets - Response JSON

[
 {
 "exclusions": [
 "_id",
 "_id.oid",
 "$oid",
 "_id.$oid",
 "id"
],
 "set_id": 1,
 "date_created": "2023-12-14T12:46:34.686136",
 "name": "DEFAULT",
 "description": "default profiler set",
 "entities": [
 {
 "domain_name": "ZIP",
 "algorithm_name": "dlpx-core:CM Alpha-Numeric",
 "type": "pattern",
 "regex": "(\\b\\d{5}(?:\\-\\d{4})?\\b)",
 "meta_context": [
 "zip",
 "code"
]
 },
 {
 "domain_name": "CREDIT CARD",
 "algorithm_name": "CreditCard",
 "type": "DL"
 },
 {
 "domain_name": "DOB",
 "algorithm_name": "DateShiftDiscrete",
 "date_format": "yyyy-mm-dd",
 "type": "DL_DT",

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale profilers– 203

 "min_age_years": 18,
 "max_age_years": 100
 },
 {
 "domain_name": "EMAIL",
 "algorithm_name": "dlpx-core:Email SL",
 "type": "DL"
 },
 {
 "domain_name": "IP ADDRESS",
 "algorithm_name": "dlpx-core:CM Alpha-Numeric",
 "type": "DL"
 },
 {
 "domain_name": "ADDRESS",
 "algorithm_name": "AddrLookup",
 "type": "DL"
 },
 {
 "domain_name": "CITY",
 "algorithm_name": "USCitiesLookup",
 "type": "DL"
 },
 {
 "domain_name": "COUNTRY",
 "algorithm_name": "NullValueLookup",
 "type": "DL"
 },
 {
 "domain_name": "FIRST_NAME",
 "algorithm_name": "dlpx-core:FirstName",
 "type": "DL"
 },
 {
 "domain_name": "LAST_NAME",
 "algorithm_name": "dlpx-core:LastName",
 "type": "DL"
 },
 {
 "domain_name": "FULL_NAME",
 "algorithm_name": "dlpx-core:FullName",
 "type": "DL"
 },
 {
 "domain_name": "TELEPHONE_NO",
 "algorithm_name": "dlpx-core:Phone US",
 "type": "DL"
 },
 {
 "domain_name": "WEB",
 "algorithm_name": "WebURLsLookup",
 "type": "DL"

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale profilers– 204

6.

a.
b.
c.

 },
 {
 "domain_name": "DRIVING_LC",
 "algorithm_name": "DrivingLicenseNoLookup",
 "type": "DL"
 },
 {
 "domain_name": "SSN",
 "algorithm_name": "dlpx-core:CM Alpha-Numeric",
 "type": "DL"
 }
],
 "date_last_updated": "2023-12-14T12:46:34.686142"
 }
]

Generally, the default profile set should be enough for most use cases. But if you want to map different
masking algorithms available in your Delphix Compliance Engine to different domains, you should create
your own profile set using the /profile-sets POST API endpoint. To know more about the profile sets
available in your Delphix Compliance Engine, visit here.
POST /profile-sets - Request JSON

{
 "set_id": 2,
 "name": "custom_profile_set",
 "description": "Different Algorithm Mapping",
 "exclusions": [
 "_id",
 "_id.oid",
 "$oid",
 "_id.$oid",
 "id"
],
 "entities": [
 {
 "domain_name": "FIRST_NAME",
 "algorithm_name": "dlpx-core:FirstName",
 "type": "DL"
 },
 {
 "domain_name": "LAST_NAME",
 "algorithm_name": "dlpx-core:LastName",
 "type": "DL"
 }
]
}

Understanding the profile-set payload parameters:
name: Name of the profile set.
exclusions: List of fields (or column names) to exclude from the discovery.
entities: List of entity types to run discovery:

https://masking.delphix.com/docs/latest/identifying-sensitive-data

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale profilers– 205

i.

ii.

iii.
1.

2.

3.

domain_name: The domain name must exist in the Compliance Engine. Note, any DL type
entities Domain Name cannot be modified
algorithm_name: Any available algorithm whether out of the box or custom can be assigned
to any entity type
type: These are the following types of entities are allowed:

“DL”: A Deep Learning & NLP based discovery. All DL entities must have their
correspondence Domain Name from the table listed here. Example payload:

{
 "domain_name": "CREDIT_CARD",
 "algorithm_name": "CreditCard",
 "type": "DL"
}

“context”: Where users can provide their list of explicit values for discovery. Example
payload:

{
 "domain_name": "TITLE",
 "algorithm_name": "RandomValueLookup",
 "type": "context",
 "list": [
 "Mr.",
 "Mrs.",
 "Ms.",
 "Miss",
 "Madam",
 "Master"
]
}

“pattern” - The regex-based entity, users can add their regex criteria. Additionally, a
list of fields can be supplied to provide further context to support regex discovery.
Example payload:

{
 "domain_name": "ZIP_CODE",
 "algorithm_name": "dlpx-core:CM Alpha-Numeric",
 "type": "pattern",
 "regex": "(\\b\\d{5}(?:\\-\\d{4})?\\b)",
 "meta_context": [
 "zip",
 "code"
]
}

POST /profile-sets - Response JSON

{

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale profilers– 206

7.

a.

b.

c.
d.

e.

f.

g.

 "set_id": 2,
 "name": "custom_profile_set",
 "description": "Different Algorithm Mapping",
 "exclusions": [
 "_id",
 "_id.oid",
 "$oid",
 "_id.$oid",
 "id"
],
 "entities": [
 {
 "domain_name": "FIRST_NAME",
 "algorithm_name": "dlpx-core:FirstName",
 "type": "DL"
 },
 {
 "domain_name": "LAST_NAME",
 "algorithm_name": "dlpx-core:LastName",
 "type": "DL"
 }
]
}

You can now start a profiler task using the /tasks POST API endpoint.
POST /tasks - Request JSON

{
 "connector_id": 1,
 "mount_filesystem_id": 1,
 "set_id": 1,
 "scan_depth": 1000,
 "unique_source_files_identifier": "file_identifier",
 "unload_split": 2,
 "file_type": "parquet"
}

Understanding the task payload parameters:
connector_id - The connector to get the source details from. The profiler will identify all files
(recursively) within the source S3 path provided in the connector-info details.
mount_filesystem_id - The mount filesystem ID that the resultant Hyperscale Parquet Connector
dataset should be populated with.
set_id - The profiler set ID that the profiler tasks should run against.
scan_depth - The number of (random) rows in the parquet file that need to be analyzed by the
profiler to determine what kind of sensitive data it is.
unique_source_files_identifier - The source key value that the resultant Hyperscale Parquet
Connector dataset should be populated with.
unload_split - The unload split that the resultant Hyperscale Parquet Connector dataset should be
populated with.
file_type - The file type should be “parquet”.

POST /tasks - Response JSON

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale profilers– 207

8.
9.

{
 "task_id": "11b92f0f-7c08-4768-97c5-17ce73213dc8",
 "status": "RUNNING"
}

The status of the task can be monitored using the /tasks/{id} GET API endpoint.
Once the status shows “SUCCESS”, the Hyperscale Parquet Connector dataset generated by the profiler is
shown as part of the results.
GET /tasks/{id} - Response JSON

{
 "task_id": "11b92f0f-7c08-4768-97c5-17ce73213dc8",
 "connector_id": 1,
 "data_set_id": null,
 "mount_filesystem_id": 1,
 "status": "SUCCESS",
 "set_id": 1,
 "scan_depth": 100,
 "file_type": "parquet",
 "unique_source_files_identifier": "file_identifier",
 "unload_split": 2,
 "results": {
 "connector_id": 1,
 "mount_filesystem_id": 1,
 "data_info": [
 {
 "source": {
 "unique_source_files_identifier": "file_identifier_1",
 "file_type": "parquet",
 "unload_split": 2,
 "source_files": [
 "customer/part-00000.gz.parquet",
 "customer/part-00001.gz.parquet",
 "customer/part-00002.gz.parquet",
 "customer/part-00003.gz.parquet",
 "customer/part-00004.gz.parquet",
 "customer/part-00005.gz.parquet",
 "customer/part-00006.gz.parquet",
 "customer/part-00007.gz.parquet",
 "customer/part-00008.gz.parquet",
 "customer/part-00009.gz.parquet"
]
 },
 "target": {
 "perform_join": true
 },
 "masking_inventory": [
 {
 "field_name": "c_last",
 "domain_name": "FIRST_NAME",

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale profilers– 208

 "algorithm_name": "dlpx-core:FirstName"
 },
 {
 "field_name": "c_state",
 "domain_name": "LAST_NAME",
 "algorithm_name": "dlpx-core:LastName"
 },
 {
 "field_name": "c_phone",
 "domain_name": "TELEPHONE_NO",
 "algorithm_name": "dlpx-core:Phone US"
 }
]
 },
 {
 "source": {
 "unique_source_files_identifier": "file_identifier_2",
 "file_type": "parquet",
 "unload_split": 2,
 "source_files": [
 "district/part-00000.gz.parquet"
]
 },
 "target": {
 "perform_join": true
 },
 "masking_inventory": [
 {
 "field_name": "d_name",
 "domain_name": "LAST_NAME",
 "algorithm_name": "dlpx-core:LastName"
 },
 {
 "field_name": "d_street_2",
 "domain_name": "LAST_NAME",
 "algorithm_name": "dlpx-core:LastName"
 },
 {
 "field_name": "d_state",
 "domain_name": "LAST_NAME",
 "algorithm_name": "dlpx-core:LastName"
 }
]
 },
 {
 "source": {
 "unique_source_files_identifier": "file_identifier_7",
 "file_type": "parquet",
 "unload_split": 2,
 "source_files": [
 "orders/part-00000.gz.parquet",
 "orders/part-00001.gz.parquet",

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale profilers– 209

 "orders/part-00002.gz.parquet",
 "orders/part-00003.gz.parquet",
 "orders/part-00004.gz.parquet"
]
 },
 "target": {
 "perform_join": true
 },
 "masking_inventory": [
 {
 "field_name": "o_id",
 "domain_name": "TELEPHONE_NO",
 "algorithm_name": "dlpx-core:Phone US"
 }
]
 },
 {
 "source": {
 "unique_source_files_identifier": "file_identifier_9",
 "file_type": "parquet",
 "unload_split": 2,
 "source_files": [
 "warehouse/part-00000.gz.parquet"
]
 },
 "target": {
 "perform_join": true
 },
 "masking_inventory": [
 {
 "field_name": "w_name",
 "domain_name": "CITY",
 "algorithm_name": "USCitiesLookup"
 },
 {
 "field_name": "w_street_1",
 "domain_name": "ZIP",
 "algorithm_name": "dlpx-core:CM Alpha-Numeric"
 },
 {
 "field_name": "w_state",
 "domain_name": "LAST_NAME",
 "algorithm_name": "dlpx-core:LastName"
 },
 {
 "field_name": "w_zip",
 "domain_name": "LAST_NAME",
 "algorithm_name": "dlpx-core:LastName"
 }
]
 }
]

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale profilers– 210

10.

 },
 "total": 16,
 "identified": null,
 "completion": 100,
 "elapsed_time": "0:06:47.837970",
 "start_time": "2023-12-14T13:32:18.913943",
 "end_time": "2023-12-14T13:39:06.756026",
 "date_created": "2023-12-14T13:32:18.913948",
 "date_last_updated": "2023-12-14T13:32:18.913950"
}

You can push the generated dataset directly from the profiler using the /data-sets/{task_id} POST
API endpoint. The response contains the ID of the newly created dataset on the controller.
POST /data-sets/{task_id} - Response JSON

{
 "data_set_id": 1
}

The DL entities within the default Profiler-Set with their algorithms

Type Domain Name Algorithm Description

DL FULL_NAME dlpx-core:FullName Full name detection

DL FIRST_NAME dlpx-core:FirstName First name

DL LAST_NAME dlpx-core:LastName Last name

DL EMAIL dlpx-core:Email SL Email address

DL TELEPHONE_NO dlpx-core:Phone US Phone or Mobile number

DL DOB DateShiftDiscrete Date of Birth

DL IP ADDRESS dlpx-core:CM Alpha-Numeric IP Address

DL CREDIT CARD CreditCard Credit Card

DL ADDRESS AddrLookup Street Address

DL CITY USCitiesLookup City name

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale profilers– 211

DL COUNTRY NullValueLookup Country name

DL WEB WebURLsLookup URL or domain name

DL DRIVING_LC DrivingLicenseNoLookup US driving license

DL SSN dlpx-core:CM Alpha-Numeric Social Security Number

The other available DL entities:

Type Domain Name Description

DL STATE State name

DL STATE_CODE State Code

DL CRYPTO Bitcoin address

DL IBAN_CODE The International Bank Account Number (IBAN)

DL US_BANK_NUMBER A US bank account number is between 8 to 17 digits.

DL US_ITIN US Individual Taxpayer Identification Number (ITIN

DL US_PASSPORT A US passport number with 9 digits

	Welcome to the Hyperscale Compliance documentation!
	Quick references
	Release notes
	New features
	Fixed issues
	Known issues

	Overview
	Hyperscale Compliance deployment architecture​
	The Continuous Compliance platform
	Next steps

	Getting started
	Hyperscale Compliance architecture
	Data source support
	Supported platforms
	Network requirements
	Deployment
	NFS server installation
	Accessing the Hyperscale Compliance API

	How to setup a Hyperscale Compliance job
	Pre-checks
	API Flow to Setup a Hyperscale Compliance Job
	Engines API
	MountFileSystems API
	ConnectorInfo API
	StructuredDataFormat APIs
	DataSets API
	Jobs API
	JobExecution API

	How to Sync a Hyperscale Job
	How to import a Job from Continuous Compliance Engine
	How to re-import a Job from Continuous Compliance Engine
	Script to automatically import/re-import a Job from Continuous Compliance Engine
	How to sync global settings from a Delphix Continuous Compliance Engine
	Limitations

	How to cancel a Hyperscale job
	Configuration settings
	Commonly used properties
	Other properties

	Hyperscale Compliance API
	Accessing the Hyperscale Compliance API
	View the API reference

	Cleaning up execution data
	Hyperscale profilers
	Parquet profiler

