
Hyperscale Compliance Home
Hyperscale Compliance

Exported on 08/15/2023

Hyperscale Compliance – Hyperscale Compliance Home

– 2

Table of Contents

Overview.. 4

Hyperscale Masking .. 5
Introduction ... 5

Orchestrator ... 5

Configuration ... 6

Source & Target Connectors.. 8

Masking Engine cluster .. 11

Hyperscale Compliance – Hyperscale Compliance Home

– 3

When databases contain billions of rows of data it can take weeks to protect sensitive data and PII using manual
processes or bulk masking to anonymize the data. Hyperscale Compliance from Delphix provides incredibly fast
masking speeds for large datasets enabling continuous compliant data delivery for CI/CD and DevOps initiatives.

Hyperscale Compliance does this by distributing the masking workload for a single job across multiple virtual
Continuous Compliance engines, reducing the time to mask large databases through increased scalability and
efficiency.

Hyperscale Compliance – Hyperscale Compliance Home

Overview– 4

Overview
Delphix Hyperscale Masking is designed to improve the performance of masking large datasets. This feature
functions by breaking datasets into smaller pieces, then orchestrating the work of masking those pieces across
many Masking Engines. In general, datasets larger than 10 TB in size will see improved masking performance when
run on the Hyperscale architecture.

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale Masking– 5

Hyperscale Masking

Introduction
There are three main components to the Hyperscale architecture: the Orchestrator, source/target Connectors, and
the Masking Engine Cluster.

Orchestrator
The Orchestrator is responsible for taking a series of files (provided by a Source Connector) and initiating a masking
job, in parallel, across nodes in the Masking Engine Cluster. The total throughput of an individual job can be
adjusted up or down depending on the number of nodes in the Cluster.

For installation, the Orchestrator is a Linux binary that must be executed on a host running Red Hat CentOS version
7.x - 8.x, or higher.

Orchestrator host requirement on Linux
The subdirectory of /u01/ will be used throughout the article as a root folder where configuration files will be
placed.

Type Host Requirement Explanation

User There must be an operating system user
(orch_os) able to login to the orchestrator
host via SSH (port 22).

These permissions must be granted as
well, and can be done via sudo
authorization of the commands:

- Permission to run mount, unmount,
mkdir, rmdir, and ping as a super-user
with NOPASSWD.

This will be a primary user responsible for
running orchestrator executables.

Executable Folder There must be a directory on the
Orchestrator host where the executable
can be installed. To install it, simply copy
the binary file to the directory and set it to
be executable.

The directory must have -rwxrwx---

(0770) permissions at minimum.

The orch_os user must own the directory
and have -rwxrwx--- (0770)
permissions on each directory in the path
leading to the toolkit directory.

At least 5 GB of storage is needed at the
time of setting up the environment and
at least 500MB of free space is required to
allow refreshes and maintenance of the
toolkit, especially during upgrades.

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale Masking– 6

1.
2.
3.

Type Host Requirement Explanation

Apps Folder Mask application folder, for example: /u01/
mask-apps.

/u01/mask-apps/app-name

The orch_os user must own the directory.

This folder will host configuration files as
discussed in the following sections.

Logging Logs and other runtime temporary files
folder, for example: /u01/mask-logs.

/u01/mask-logs/app-name/
timestamp.log

The orch_os user must own the directory.

This folder will host runtime/log files.

Network
Connectivity

The Orchestrator must be able to
communicate with each node of the
Masking Engine Cluster on port 443 or 80
(not recommended).

A user can initiate the following tests from
the orch_host_checker.sh script to check:

 - OS and Host permissions/access
 - Network Port Checks

The orch_os user must have sufficient
permissions to execute basic
connectivity commands on the OS (ping,
ip address, traceroute, etc.).

AWS SDK If source data is in S3 and/or Redshift, then
AWS SDK must be installed on the
Orchestrator host.

AWS access details are also required.

This is optional if the source and
destination is on AWS S3 or Redshift.

Hardware
Requirements

Minimum:
 32 vCPU, 512 GB of memory, 1 TB data
disk.

Recommended:
 64 vCPU, 1 TB of memory, 1 TB data disk.

OS disk space: 20 - 30 GB

Configuration
The configuration is divided into three (3) components/types, as follows:

Masking Engine Cluster file (engines.json)
Source and Target Connectors config file (tables_info.json)
Individual Table Inventory config file (table_name.json)

The list of nodes the Orchestrator will communicate within the Masking Engine Cluster must be defined in the file
(e.g. /u01/mask-apps/engines.json). An example of the syntax to use when defining the cluster nodes in the config
file is shown below.

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale Masking– 7

•

•
•
•

•
•

engines.json file

{
 "engines": [
 {
 "name": "exec1",
 "IP": "30.0.0.240",
 "protocol": "https",
 "username": "admin",
 "password": "gAAAAABhXockEdXK3GNDr=="
 },
 {
 "name": "exec2",
 "IP": "30.0.0.181",
 "protocol": "https",
 "username": "admin",
 "password": "gAAAAABhXockEdXK6ycDrxJu"
 }
],

Engines (required): Declares how many masking nodes in the cluster would be used to mask. This example
has two (exec1 and exec2).
Name: Determines node identity on execution.
IP: Engine IP address.
Username/Password: The Orchestrator will encrypt any plaintext password.

"virt_engines": [
 {
 "engName": "virt1",
 "IP": "10.0.1.100",
 "protocol": "https",
 "username": "admin",
 "password": "gAAAAABhXocklOVOt35DRnc"
 }
],

Virt_Engines (optional): The Orchestrator can also leverage vFiles for the staging area.
EngName: Name of the Virtualization Engine.

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale Masking– 8

•
•
•

"orch_config": [
 {
 "type": "sftp",
 "name": "orch1",
 "IP": "30.0.0.224",
 "hostname": "ip-30-0-0-224",
 "username": "orch_os",
 "password": "gAAAAABhXockU6mvBSPRzH0",
 "sftp_port": 22
 }
]
}

* Orch_Config (required): Orchestrator configures whether to use SFTP (on port 22/SSH) or NFS mount-to-read,
and mask files in the staging area. * Type: Property accepts either nfs_mount or sftp .

Source & Target Connectors
Source Connectors are responsible for unloading data from the system of record (SOR) into a series of files located
in the Staging Area. These Connectors leverage bulk unload operations offered by the SOR and are therefore unique
to each. The prerequisites for running each Connector vary slightly but always require network access to the SOR
from the host running the Connector and credentials to run the appropriate unload commands.

The Connectors are installed in the same high-level directory as the Orchestrator. Connectors can be defined in a
simple JSON file (similar to the files above) that takes a series of inputs, as described below.

tables_info.json config file

{
 "source": {
 "db_type": "oracle",
 "hostname": "ora-source",
 "dbname": "prod_data",
 "username": "user",
 "password": "gAAAAABhXpRmlF",
 "dbport": "1521",
 "jdbc": "Y"
 },
 "target": {
 "db_type": "oracle",
 "hostname": "ora-target",
 "dbname": "dev_data",
 "username": "user",
 "password": "gAAAAABhXffRml",
 "dbport": "1521",
 "jdbc": "Y"
 },

Source/Target (required): Defines what source to read data from.
DB_Type: Determines the database system: Oracle, MSSQL, AWS S3, AWS Redshift, NFS, IBM Db2, MongoDB.
Hostname: Hostname or IP of the host.

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale Masking– 9

•
•
•

•
•
•

•
•

Username/Password: The Orchestrator will encrypt any plaintext password.
Dbport: Database port number.
JDBC: If the source is connected via JDBC (Y/N).

"tables": [
{
 "source_schema": "DELPHIXDB",
 "source_table": "CUSTOMER_EMPLOYMENT_DATA_03",
 "target_schema": "DELPHIXDB",
 "target_table": "CUSTOMER_EMPLOYMENT_DATA_03",
 "filterKey": "N/A",
 "unloadSplit": "1",
 "unloadCols": "*",
 "splitSizeMB": "1000"
},
{
 "source_schema": "DELPHIXDB",
 "source_table": "CUSTOMER_EMPLOYMENT_DATA_02",
 "target_schema": "DELPHIXDB",
 "target_table": "CUSTOMER_EMPLOYMENT_DATA_02",
 "filterKey": "N/A",
 "unloadSplit": "1",
 "unloadCols": "*",
 "splitSizeMB": "1000"
}
],

Tables: List of tables to mask.
Source_x: Table schema, table name.
Target_x: Table schema, table name.
 All tables are listed here.

],
 "files": [
 {
"format": "parquet",
"source_file": "customers.parquet",
"file_size": 10277,
"source_path": "/mnt/provision/par_dump",
"target_file": "customers.msk_parquet",
"target_path": "/mnt/provision/par_trgt",
"splitSizeMB": "1000"
 }
]
}

Files: List of files to mask. For example, Parquet files either on S3 or local NFS mount point.
Format: Type of file: Parquet, JSON, CSV, fixed width, etc.

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale Masking– 10

•

•

table_name.json config file

{
 "_pageInfo": {
 "numberOnPage": 14,
 "total": 14
 },
 "responseList": [
 {
 "fileFieldMetadataId": 15909,
 "fileFormatId": 1204,
 "recordTypeId": 1204,
 "fieldLength": 0,
 "fieldName": "customerId",
 "fieldPositionNumber": 1,
 "isMasked": false,
 "isProfilerWritable": true
 },
 {
 "fileFieldMetadataId": 15910,
 "fileFormatId": 1204,
 "recordTypeId": 1204,
 "fieldLength": 0,
 "fieldName": "firstName",
 "fieldPositionNumber": 2,
 "algorithmName": "FirstNameLookup",
 "domainName": "FIRST_NAME",
 "dateFormat": "",
 "isMasked": true,
 "isProfilerWritable": true,
 "notes": ""
 }
 }
}

This file will be generated as part of the Orchestrator execution process for each table and field that requires
masking.
The Orchestrator includes a feature allowing the user to easily generate the configuration using a Delphix
Masking engine-sensitive data inventory.

Staging area
The Staging Area is where data from the SOR is written to a series of files by the Source Connector. It can be either
an object store such as AWS S3 or a file system. The file system can be attached volumes, or it can be supplied via
the Delphix Virtualization Engine vFile feature. In either case, there must be enough storage available to hold the
dataset in an uncompressed format.

Orchestrator
The Orchestrator binary takes a series of the following command arguments:

Hyperscale Compliance – Hyperscale Compliance Home

Hyperscale Masking– 11

Command usage

dxhs-mask -a ora_customer -e mask_ora -u virt --virt “virt1:mask_ora:/mnt/
provision:Linux Orchestrator:HyperScale Mounts” -m “exec3" -i /u01/mask-apps -o /u01/
mask-logs -d ‘|' -en Y -t ‘\n
-a: application name (ora_customer)
-e: environment name (mask_ora)
-u: unload repository (aws/orch/virt)
 orch means use local nfs mount point for staging
--virt:mnt_name:<mnt_path>:<virtualization env-name>:<dataset-group>
-op: mnt_name:<mnt_path> then --virt argument not required
-m: masking engine name
-i: orchestrator mask folder for config files
-o: orchestrator log folder also for metadata other related files
-d: delimiter to be used for csv files
-en: if config files are encrypted (Y = yes or E = to encrypt)
-t: new line terminator

Masking Engine cluster
The Masking Engine Cluster is a group of Delphix Masking Engines v6.0.7+ that will be leveraged by the Orchestrator
to run large masking jobs in parallel. Instructions for installing and configuring each Engine can be found in the
Masking Documentation.

https://maskingdocs.delphix.com/

	Overview
	Hyperscale Masking
	Introduction
	Orchestrator
	Configuration
	Source & Target Connectors
	Masking Engine cluster

